The choked back pressure characteristic of the steam turbine unit with air cooled condenser is very different with the unit with wet cooling technology, and the understanding of the choked back pressure performance ch...The choked back pressure characteristic of the steam turbine unit with air cooled condenser is very different with the unit with wet cooling technology, and the understanding of the choked back pressure performance change with operation load is important to guide the economic operation of the unit. One simplified Variable Operation Condition Analysis Method was put forward for calculation of the unit output-turbine back pressure characteristics. Based on this method, the choked back pressure for each operation load can be determined. An example was given for a super-critical, regenerative single-shaft, 2-casing with 2-exhaust steam turbine generation unit with air cooled condenser. The calculation result was provided and compared with the result of the unit with wet cooling technology.展开更多
The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit ...The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit is about 1 kW, and the work refrigerant is R22/R407C/R410A/CO2. The MATLAB/SIMULINK software was employed to build the simulation model. The thermodynamic simulation model is significant for the optimization of parameters of the unit, such as condensation and evaporation temperature and mass flow of the sanitary hot water and size of hot water storage tank. The COP of the CCP of R410A system is about 3% - 5% higher than the CCP of the R22 system, while CCP of the R407C system is a little lower than the CCP of R22 system. And the CCP of CO2 trans-critical system has advantage in the hot supply mode. The simulation method provided a theoretical reference for developing the production of CCP with substitute refrigerant R407C/R410A/CO2.展开更多
The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV...The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV experiments are carried out and recirculation ratio of each condition is calculated. Results show that the thermal flow field of the cooling tower has great influence on the recirculation under the cooling tower. Ameliorating the thermal flow field of the cooling tower can reduce the recirculation under the cooling tower and improve the efficiency of air-cooled condenser also.展开更多
The natural wind plays disadvantageous roles in the operation of air-cooled steam condensers in power plant.It is of use to take various measures against the adverse effect of wind for the performance improvement of a...The natural wind plays disadvantageous roles in the operation of air-cooled steam condensers in power plant.It is of use to take various measures against the adverse effect of wind for the performance improvement of air-cooled condensers.Based on representative 2×600 MW direct air-cooled power plant,three ways that can arrange and optimize the flow field of cooling air thus enhance the heat transfer of air-cooled condensers were proposed.The physical and mathematical models of air-cooled condensers with various flow leading measures were presented and the flow and temperature fields of cooling air were obtained by CFD simulation.The back pressures of turbine were calculated for different measures on the basis of the heat transfer model of air-cooled condensers.The results show that the performance of air-cooled condensers is improved thus the back pressure of turbine is lowered to some extent by taking measures against the adverse impact of natural wind.展开更多
The aerodynamic behavior of tens of axial flow fans incorporated with air-cooled condensers in a power plant is different from that of an individual fan.Investigation of the aerodynamic characteristics of axial flow f...The aerodynamic behavior of tens of axial flow fans incorporated with air-cooled condensers in a power plant is different from that of an individual fan.Investigation of the aerodynamic characteristics of axial flow fan array benefits its design optimization and running regulation.Based on a representative 2600 MW direct-dry cooling power plant,the flow rate of each fan and the overall flow rate of the fan array are obtained in the absence of ambient wind and at various wind speeds and directions,using CFD simulation.The cluster factor of each fan and the average cluster factor of the fan array are calculated and analyzed.Results show that the cluster factors are different from each other and that the cluster effect with ambient wind is significantly different from the cluster effect with no wind.The fan at the periphery of the array or upwind of the ambient wind generally has a small cluster factor.The average cluster factor of the array decreases with the increasing wind speeds and also varies widely with wind direction.The cluster effect of the axial flow fan array can be applied to optimize the design and operation of air-cooled condensers in a power plant.展开更多
文摘The choked back pressure characteristic of the steam turbine unit with air cooled condenser is very different with the unit with wet cooling technology, and the understanding of the choked back pressure performance change with operation load is important to guide the economic operation of the unit. One simplified Variable Operation Condition Analysis Method was put forward for calculation of the unit output-turbine back pressure characteristics. Based on this method, the choked back pressure for each operation load can be determined. An example was given for a super-critical, regenerative single-shaft, 2-casing with 2-exhaust steam turbine generation unit with air cooled condenser. The calculation result was provided and compared with the result of the unit with wet cooling technology.
文摘The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit is about 1 kW, and the work refrigerant is R22/R407C/R410A/CO2. The MATLAB/SIMULINK software was employed to build the simulation model. The thermodynamic simulation model is significant for the optimization of parameters of the unit, such as condensation and evaporation temperature and mass flow of the sanitary hot water and size of hot water storage tank. The COP of the CCP of R410A system is about 3% - 5% higher than the CCP of the R22 system, while CCP of the R407C system is a little lower than the CCP of R22 system. And the CCP of CO2 trans-critical system has advantage in the hot supply mode. The simulation method provided a theoretical reference for developing the production of CCP with substitute refrigerant R407C/R410A/CO2.
文摘The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV experiments are carried out and recirculation ratio of each condition is calculated. Results show that the thermal flow field of the cooling tower has great influence on the recirculation under the cooling tower. Ameliorating the thermal flow field of the cooling tower can reduce the recirculation under the cooling tower and improve the efficiency of air-cooled condenser also.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No.2009CB219804)
文摘The natural wind plays disadvantageous roles in the operation of air-cooled steam condensers in power plant.It is of use to take various measures against the adverse effect of wind for the performance improvement of air-cooled condensers.Based on representative 2×600 MW direct air-cooled power plant,three ways that can arrange and optimize the flow field of cooling air thus enhance the heat transfer of air-cooled condensers were proposed.The physical and mathematical models of air-cooled condensers with various flow leading measures were presented and the flow and temperature fields of cooling air were obtained by CFD simulation.The back pressures of turbine were calculated for different measures on the basis of the heat transfer model of air-cooled condensers.The results show that the performance of air-cooled condensers is improved thus the back pressure of turbine is lowered to some extent by taking measures against the adverse impact of natural wind.
基金supported by the National Basic Research Program of China (2009CB219804)the National Key Technology R&D Program of China (2011BAA04B02)
文摘The aerodynamic behavior of tens of axial flow fans incorporated with air-cooled condensers in a power plant is different from that of an individual fan.Investigation of the aerodynamic characteristics of axial flow fan array benefits its design optimization and running regulation.Based on a representative 2600 MW direct-dry cooling power plant,the flow rate of each fan and the overall flow rate of the fan array are obtained in the absence of ambient wind and at various wind speeds and directions,using CFD simulation.The cluster factor of each fan and the average cluster factor of the fan array are calculated and analyzed.Results show that the cluster factors are different from each other and that the cluster effect with ambient wind is significantly different from the cluster effect with no wind.The fan at the periphery of the array or upwind of the ambient wind generally has a small cluster factor.The average cluster factor of the array decreases with the increasing wind speeds and also varies widely with wind direction.The cluster effect of the axial flow fan array can be applied to optimize the design and operation of air-cooled condensers in a power plant.