Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth's surface system, but such studies are rare. In this study, we detected the spatial-temporal varia...Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth's surface system, but such studies are rare. In this study, we detected the spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River(SRYR) during the period 2002–2011 based on data from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E). Moreover, the trends of onset dates and durations of the soil freeze-thaw cycles under different stages were also analyzed. Results showed that the thresholds of daytime and nighttime brightness temperatures of the freeze-thaw algorithm for the SRYR were 257.59 and 261.28 K, respectively. At the spatial scale, the daily frozen surface(DFS) area and the daily surface freeze-thaw cycle surface(DFTS) area decreased by 0.08% and 0.25%, respectively, and the daily thawed surface(DTS) area increased by 0.36%. At the temporal scale, the dates of the onset of thawing and complete thawing advanced by 3.10(±1.4) and 2.46(±1.4) days, respectively; and the dates of the onset of freezing and complete freezing were delayed by 0.9(±1.4) and 1.6(±1.1) days, respectively. The duration of thawing increased by 0.72(±0.21) day/a and the duration of freezing decreased by 0.52(±0.26) day/a. In conclusion, increases in the annual minimum temperature and winter air temperature are the main factors for the advanced thawing and delayed freezing and for the increase in the duration of thawing and the decrease in the duration of freezing in the SRYR.展开更多
Humid air turbine cycle(HAT)has potential of electrical efficiencies comparable to combined cycle,with lower investment cost and NO_(x) emission.The typical heat exchanger network of HAT consists of intercooler(if the...Humid air turbine cycle(HAT)has potential of electrical efficiencies comparable to combined cycle,with lower investment cost and NO_(x) emission.The typical heat exchanger network of HAT consists of intercooler(if there is),aftercooler,recuperator,economizer and humidifier,which brings higher efficiency but makes the system more complex.To simplify HAT layout,a novel humidifier concept is proposed by integrating the aftercooler into traditional counter-current humidifier.Based on this concept,a one-dimensional model including pressure drop and exergy calculation is established to distinguish the thermodynamic and hydrodynamic characteristics,and then the structural parameters,such as the number of rows and columns,tube diameter,pitch and type for a micro HAT are identified.The results show that the aftercool-humidifier plays the same role as original aftercooler and humidifier,and can match the in-tube air,out-tube air and water stream well with lower volume.In the case of micro HAT cycle,the volume of heat and mass transfer area can be reduced by 47%compared with traditional design.The major thermal resistance occurred in the convection heat transfer process inside the tube;however,using enhanced tube cannot effectively improve the compactness of device.展开更多
The present study attempts to investigate the effect of moisture conditioning on the in- direct tensile strength (ITS) of cold recycled mixture with bitumen emulsion. Firstly, samples were prepared using a Superpave...The present study attempts to investigate the effect of moisture conditioning on the in- direct tensile strength (ITS) of cold recycled mixture with bitumen emulsion. Firstly, samples were prepared using a Superpave gyratory compactor. They were hence condi- tioned using moisture induced sensitivity tester (MIST) device. Factorial design was carried out considering four factors each at two different levels. These factors were specimen thickness, air voids content, pressure and number of cycles. In the MIST device, samples are cyclically subjected to water pressure through the sample pores. The MIST conditioned samples were tested for indirect tensile strength. The analysis of two-level full-factorial designed experiments revealed that all four factors have a negative effect on tensile strength of cold recycled mixture with bitumen emulsion. Specimen thickness was the most significant factor affecting the tensile strength followed by air voids content. In two- factor interaction, specimen thickness-number of cycles, air voids content-pressure, and pressure-number of cycles were significant. The most significant three-factor interaction was specimen thickness-pressure-number of cycles. The results from the study suggest that in measuring tensile strength, the appropriate specimen thickness and air voids content should be selected to quantify the representative tensile strength for in-situ conditions.展开更多
基金supported by the National Science and Technology Support Plan of China (2015BAD07B02)
文摘Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth's surface system, but such studies are rare. In this study, we detected the spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River(SRYR) during the period 2002–2011 based on data from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E). Moreover, the trends of onset dates and durations of the soil freeze-thaw cycles under different stages were also analyzed. Results showed that the thresholds of daytime and nighttime brightness temperatures of the freeze-thaw algorithm for the SRYR were 257.59 and 261.28 K, respectively. At the spatial scale, the daily frozen surface(DFS) area and the daily surface freeze-thaw cycle surface(DFTS) area decreased by 0.08% and 0.25%, respectively, and the daily thawed surface(DTS) area increased by 0.36%. At the temporal scale, the dates of the onset of thawing and complete thawing advanced by 3.10(±1.4) and 2.46(±1.4) days, respectively; and the dates of the onset of freezing and complete freezing were delayed by 0.9(±1.4) and 1.6(±1.1) days, respectively. The duration of thawing increased by 0.72(±0.21) day/a and the duration of freezing decreased by 0.52(±0.26) day/a. In conclusion, increases in the annual minimum temperature and winter air temperature are the main factors for the advanced thawing and delayed freezing and for the increase in the duration of thawing and the decrease in the duration of freezing in the SRYR.
基金financial support by National Science and Technology Major Project(2017-I-0009-0010)to this research work。
文摘Humid air turbine cycle(HAT)has potential of electrical efficiencies comparable to combined cycle,with lower investment cost and NO_(x) emission.The typical heat exchanger network of HAT consists of intercooler(if there is),aftercooler,recuperator,economizer and humidifier,which brings higher efficiency but makes the system more complex.To simplify HAT layout,a novel humidifier concept is proposed by integrating the aftercooler into traditional counter-current humidifier.Based on this concept,a one-dimensional model including pressure drop and exergy calculation is established to distinguish the thermodynamic and hydrodynamic characteristics,and then the structural parameters,such as the number of rows and columns,tube diameter,pitch and type for a micro HAT are identified.The results show that the aftercool-humidifier plays the same role as original aftercooler and humidifier,and can match the in-tube air,out-tube air and water stream well with lower volume.In the case of micro HAT cycle,the volume of heat and mass transfer area can be reduced by 47%compared with traditional design.The major thermal resistance occurred in the convection heat transfer process inside the tube;however,using enhanced tube cannot effectively improve the compactness of device.
基金supported by the National Natural Science Foundation of China(grant No.51308477)
文摘The present study attempts to investigate the effect of moisture conditioning on the in- direct tensile strength (ITS) of cold recycled mixture with bitumen emulsion. Firstly, samples were prepared using a Superpave gyratory compactor. They were hence condi- tioned using moisture induced sensitivity tester (MIST) device. Factorial design was carried out considering four factors each at two different levels. These factors were specimen thickness, air voids content, pressure and number of cycles. In the MIST device, samples are cyclically subjected to water pressure through the sample pores. The MIST conditioned samples were tested for indirect tensile strength. The analysis of two-level full-factorial designed experiments revealed that all four factors have a negative effect on tensile strength of cold recycled mixture with bitumen emulsion. Specimen thickness was the most significant factor affecting the tensile strength followed by air voids content. In two- factor interaction, specimen thickness-number of cycles, air voids content-pressure, and pressure-number of cycles were significant. The most significant three-factor interaction was specimen thickness-pressure-number of cycles. The results from the study suggest that in measuring tensile strength, the appropriate specimen thickness and air voids content should be selected to quantify the representative tensile strength for in-situ conditions.