The high temperature gas occurs behind shock or near the wall surface of vehicle in the hypersonic flight. As the temperature exceeds 2 000 K, 4 000 K, respectively, O2 and N2 molecules are successively dissociated. B...The high temperature gas occurs behind shock or near the wall surface of vehicle in the hypersonic flight. As the temperature exceeds 2 000 K, 4 000 K, respectively, O2 and N2 molecules are successively dissociated. Because of variable components at dif- ferent temperatures and pressures, the dissociated air is no longer a perfect gas, In this paper, a new method is developed to calculate accurate thermal physical parameters with the dissociation degree providing the thermochemical equilibrium procedure. Based on the dissociation degree, it is concluded that few numbers of equations and the solutions are easily obtained. In addition, a set of formulas relating the parameter to the dissociation degree are set up four-species, O2 molecule The thermodynamic properties of dissociated air containing and N2 molecule, O atom and N atom, are studied with the new method, and the results are consistent with those with the traditional equilibrium constant method. It is shown that this method is reliable for solving thermal physical parameters easily and directly.展开更多
In this study,a theoretical method is proposed to solve shock relations coupled with chemical equilibrium.Not only shock waves in dissociated flows but also detonation waves in combustive mixtures can be solved.The gl...In this study,a theoretical method is proposed to solve shock relations coupled with chemical equilibrium.Not only shock waves in dissociated flows but also detonation waves in combustive mixtures can be solved.The global iterative solving process is specially designed to mimic the physical and chemical process in reactive shock waves to ensure good stability and fast convergence in the proposed method.Within each global step,the single-variable equations of normal and oblique shock relations are derived and solved with the Newton iteration method to reduce the complexity of the problems,and the minimization of free energy method of NASA(National Aeronautics and Space Administration)is adopted to solve equilibrium compositions.It is demonstrated that the convergent process is stable and very close to the real chemical-kinetic process,and high accuracy is achieved in the solutions of normal and oblique reactive shock waves.Moreover,the proposed theoretical method has also been applied to many problems associated with reactive shocks,including the stability of oblique detonation wave,bow detonation over a sphere,and shock reflection in dissociated air.The great importance of using chemical equilibrium to theoretically predict the theoretical range of the wedge angle for a standing oblique detonation wave(the standing window of the oblique detonation wave),the stand-off distance of bow detonation wave and the transition criterion of shock reflection in dissociated air with high accuracy have been addressed.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11732011,11672205,and 11332007)the National Key Research and Development Program of China(No.2016YFA0401200)
文摘The high temperature gas occurs behind shock or near the wall surface of vehicle in the hypersonic flight. As the temperature exceeds 2 000 K, 4 000 K, respectively, O2 and N2 molecules are successively dissociated. Because of variable components at dif- ferent temperatures and pressures, the dissociated air is no longer a perfect gas, In this paper, a new method is developed to calculate accurate thermal physical parameters with the dissociation degree providing the thermochemical equilibrium procedure. Based on the dissociation degree, it is concluded that few numbers of equations and the solutions are easily obtained. In addition, a set of formulas relating the parameter to the dissociation degree are set up four-species, O2 molecule The thermodynamic properties of dissociated air containing and N2 molecule, O atom and N atom, are studied with the new method, and the results are consistent with those with the traditional equilibrium constant method. It is shown that this method is reliable for solving thermal physical parameters easily and directly.
基金co-supported by the National Natural Science Foundation of China (Nos. 11672312, 11772284 and 11532014)the Research Grants Council, Hong Kong, China (No. 152151/16E)the Department of Mechanical Engineering, The Hong Kong Polytechnic University, China (No. G-YBYJ)
文摘In this study,a theoretical method is proposed to solve shock relations coupled with chemical equilibrium.Not only shock waves in dissociated flows but also detonation waves in combustive mixtures can be solved.The global iterative solving process is specially designed to mimic the physical and chemical process in reactive shock waves to ensure good stability and fast convergence in the proposed method.Within each global step,the single-variable equations of normal and oblique shock relations are derived and solved with the Newton iteration method to reduce the complexity of the problems,and the minimization of free energy method of NASA(National Aeronautics and Space Administration)is adopted to solve equilibrium compositions.It is demonstrated that the convergent process is stable and very close to the real chemical-kinetic process,and high accuracy is achieved in the solutions of normal and oblique reactive shock waves.Moreover,the proposed theoretical method has also been applied to many problems associated with reactive shocks,including the stability of oblique detonation wave,bow detonation over a sphere,and shock reflection in dissociated air.The great importance of using chemical equilibrium to theoretically predict the theoretical range of the wedge angle for a standing oblique detonation wave(the standing window of the oblique detonation wave),the stand-off distance of bow detonation wave and the transition criterion of shock reflection in dissociated air with high accuracy have been addressed.