期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Effect of Different Types of Structural Configuration on Air Distribution in a Compact Purification Device
1
作者 YANG Xuebin LIANG Le +3 位作者 LIU Hao LIU Lin LIANG Zhen WANG Fang 《Journal of Donghua University(English Edition)》 EI CAS 2020年第6期483-492,共10页
In some old industrial plants,in order to meet the increasingly strict requirements of pollutant emission limits,it is necessary to install the compact filtration and/or purification devices in a given narrow machine ... In some old industrial plants,in order to meet the increasingly strict requirements of pollutant emission limits,it is necessary to install the compact filtration and/or purification devices in a given narrow machine room.Different types of structural configuration might influence air distribution inside these devices.The unreasonable air distribution might lead each part of filtration or purification media to operating at largely different air flow rates.Based on a computational fluid dynamics(CFD)model,this study explores the influence of different outlet positions and different upper heights on the flow field inside chamber.The porous medium model is employed to simulate the air flow in porous media.The changing structural configurations include three positioning cases of the outlet opening and eight height cases of the upper chamber.The root mean square is defined as the non-uniformity coefficient to evaluate the uniformity of air flow distribution.The results show that the farther distance between inlet and outlet openings will bring more uniform air distribution,and the increasing height of upper chamber totally trends to exhibit more uniform air distribution. 展开更多
关键词 structural configuration air distribution uniform air distribution compact purification device coefficient of velocity inhomogeneity
下载PDF
Numerical Simulation of the Effect of Air Distribution on Turbulent Flow and Combustion in a Tubular Heating Furnace 被引量:1
2
作者 WangJuan MaoYu LiLihong 《Petroleum Science》 SCIE CAS CSCD 2005年第1期44-47,共4页
A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF c... A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF combustion model and a discrete ordinate transfer radiation model were used. The hybrid grid combining a structured and a non-structured grid was generated without any simplification of the complicated geometric configuration around the burner. It was found that the multistage combustion could reduce and control the peak value of temperature. At the same time, it was concluded that the amount of primary air had little effect on the global distribution of velocity and temperature in the furnace, but a great effect on that around the burner. It is recommended that 45% - 65% of the total amount of air be taken in in primary air inlets in the furnace. All the results are important to optimize the combustion progress. 展开更多
关键词 Tubular heating furnace turbulent flow COMBUSTION air distribution numerical simulation
下载PDF
Effect of the secondary air distribution layer on separation density in a dense-phase gas–solid fluidized bed 被引量:3
3
作者 Lv Bo Luo Zhenfu +3 位作者 Zhang Bo Zhao Yuemin Zhou Chenyang Yuan Wenchao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第6期969-973,共5页
Dry coal separation has been the most significant process in the field of coal beneficiation to date, because of its special advantage of operation with no water consumption. Mineral dry separation research has receiv... Dry coal separation has been the most significant process in the field of coal beneficiation to date, because of its special advantage of operation with no water consumption. Mineral dry separation research has received wide attention, particularly in countries and regions experiencing drought and water shortages. During the process of dense coal gas-solid fluidized bed beneficiation, the material is stratified according to its density; the high density material layer remains at the bed bottom, and thus the high density coarse particle bed becomes an important infuencing factor in fluidized bed stability. In the steady fluidization stage, a small number of large radius bubbles are the direct cause of unsteady fluidization in the tradi- tional fluidized bed. The dispersion effect of the secondary air distribution bed for air flow is mainly apparent in the gas region; when the particle size exceeds 13 mm, the secondary air distribution bed has a synergistic effect on the density stability of the upper fluidized layer. When the particle size is small, especially when less than 6 ram, particles will constantly move, accounting for instability of the secondary air distribution bed and distorting the stability of the upper fluidized bed. Under optimum operation conditions, the probable deviation E of gas-solid separation fluidized with a high density coarse particle layer can be as low as 0.085 g/cm3. 展开更多
关键词 Secondary air distribution layerDry coal separationGas-solid fluidized bedParticle size
下载PDF
Effect of Air Distribution on the Transport Characteristics of Solid Particles in the Thermal Storage and Release System of Circulating Fluidized Bed
4
作者 JI Zengcai SONG Guoliang +1 位作者 TANG Zihua SUN Liwei 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第4期1554-1563,共10页
Solid particle heat storage technology offers a potential solution to the challenges posed by the significant growth of renewable energy sources,particularly in terms of grid security and stability.Consequently,it has... Solid particle heat storage technology offers a potential solution to the challenges posed by the significant growth of renewable energy sources,particularly in terms of grid security and stability.Consequently,it has the capability to optimize the energy utilization efficiency of the power system.In order to investigate the transport regulation characteristics of solid particles in the thermal storage and release system of a circulating fluidized bed(CFB),a test rig with a capacity of 0.1 MW(th)was established.This rig was utilized to systematically study the transport regulation characteristics of solid particles under the double U-type valve feed structure and U-type valve discharge structure.The experimental findings indicate that the system's design enables efficient and rapid storage and release of solid particles in the CFB.The air distribution mode,specifically the double U-type valve feed structure and the U-type valve discharge structure,significantly influence the feed and discharge characteristics of the ash storage bin.It was observed that the impact of loose air on these characteristics is more substantial than that of the return air,irrespective of the feed structure or the return structure.When adjusting the feed and discharge rate,it is recommended to adopt a scheme that involves coarse adjustment through loose air and fine adjustment through return air. 展开更多
关键词 solid particle thermal storage air distribution mode transport regulation
原文传递
Research on optimization and design methods for air distribution system based on target values 被引量:4
5
作者 Ran Gao Hengchun Zhang +3 位作者 Angui Li Shihao Wen Wuyi Du Baoshun Deng 《Building Simulation》 SCIE EI CSCD 2021年第3期721-735,共15页
To achieve sufficient air conditioning of large buildings,reasonable air distribution in indoor spaces is an effective method for creating stratified air conditioning.Therefore,optimizing the air distribution in large... To achieve sufficient air conditioning of large buildings,reasonable air distribution in indoor spaces is an effective method for creating stratified air conditioning.Therefore,optimizing the air distribution in large buildings is extremely significant.In this paper,we expound on a new method for air distribution design and optimization based on target value evaluation and summarize the relevant design processes based on an orthogonal test and by decoupling the effects of the size of the tuyere,airflow temperature,air-supply angle and velocity on air distribution.Then,we present a design case.To optimize the distribution of a lateral air supply in winter,the deflection angle,velocity and temperature of the air supply can be determined in turn.For the large and tall building types addressed in this paper,the optimal air-supply angle is 2°,the optimal air-supply velocity is 8 m/s,and the optimal air-supply temperature is 19℃. 展开更多
关键词 air distribution target value indicator optimization
原文传递
A numerical study on the effect of column layout on air distribution and performance of column attachment ventilation 被引量:3
6
作者 Haiguo Yin Linna Li +2 位作者 Rui Wu Yuanyuan Wang Angui Li 《Building Simulation》 SCIE EI CSCD 2021年第4期1095-1108,共14页
Based on the structural characteristics of existing buildings and the disadvantages of current mixed ventilation mode in the application to large space buildings,an original column attachment ventilation(CAV)has been ... Based on the structural characteristics of existing buildings and the disadvantages of current mixed ventilation mode in the application to large space buildings,an original column attachment ventilation(CAV)has been proposed.In this study,the experiment utilized a room space with four columns uniformly distributed in the space to visualize the movement of attached airflow along the cylinder surface and the floor,the numerical technique was employed to study the effects of the column layout(i.e.,uniform,centralized,dispersed,and crossed distribution)on the air distribution of CAV mode in a standard four-column full scale model of a shopping mall.Seven indices,including airflow pattern,air diffusion performance index(ADPI),air temperature distribution,heat removal effectiveness,draught rate(DR),predicted mean vote(PMV),and carbon dioxide(CO2)concentration,were used to assess the ventilation performance.In the CAV mode with a uniform column layout scheme,the experimental results indicated that the air supply flows downward along the wall surface,forming a secondary attachment with the ground and spreading along the floor in a fan radiation flow mode.Further,an“air lake”-like speed and temperature distribution similar to displacement ventilation(DV)was formed in the occupied zone.In all simulation cases,it was found that the average air velocity was less than 0.25 m/s in occupied zone,the effectiveness for heat removal was more significant than 1.0,DR value was less than 20%,the PMV level can also satisfy most people.The average CO2 concentration was around 470 ppm in the occupied breathing zone.These results indicated that the CAV mode could be an efficient air distribution method.They demonstrated the technical feasibility of applying the CAV in the space under different column layout schemes. 展开更多
关键词 column attachment ventilation air distribution column layout performance evaluation large space buildings
原文传递
Multi-objective optimization of cooling air distribution of grate cooler with different inlet temperatures by using genetic algorithm 被引量:4
7
作者 SHAO Wei CUI Zheng CHENG Lin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第3期345-354,共10页
The paper discussed a multi-objective optimization model of the cooling air distribution of a grate cooler according to the analogy
关键词 cooling air distribution grate cooler multi-objective genetic algorithm entropy generation
原文传递
A new ventilation mode of air conditioning in subway vehicles and its air distribution performance 被引量:5
8
作者 Zhiyuan Chang Ke Yi Weiwei Liu 《Energy and Built Environment》 2021年第1期94-104,共11页
The traditional ventilation mode of subway vehicles adopts the form that the inlets and outlets are placed on the upper part of the cabin.The air distribution formed in this mode often cause serious problems of therma... The traditional ventilation mode of subway vehicles adopts the form that the inlets and outlets are placed on the upper part of the cabin.The air distribution formed in this mode often cause serious problems of thermal comfort and energy consumption.In order to solve these problems caused by the traditional ventilation mode,a new hybrid ventilation mode was proposed.The hybrid ventilation mode uses both upper and underside air supply inlets.A method for evaluating the air distribution performance of subway air conditioning was developed.The method applies non-uniformity coefficients,maximum temperature difference,air diffusion performance index,modified energy utilization coefficient and Air short-circuit comprehensive coefficient.Air short-circuit comprehensive coefficient was a new index to evaluate the degree of air short-circuit of supply air.Based on the airflow simulation,the air distribution performance for the hybrid ventilation mode was evaluated using these indexes,and compared with the traditional ventilation mode.The results show that compared with the traditional ventilation mode,the hybrid ventilation mode has more uniform temperature distribution,better thermal comfort,higher energy utilization efficiency and lower degree of air short-circuit of supply air. 展开更多
关键词 air conditioning supply air distribution performance air short-circuit SUBWAY
原文传递
A CFD study on optimal venting volume and air flow distribution in a special designed hood system for controlling dust flow 被引量:3
9
作者 Song Gaoju Yang Lei Shen Henggen 《China Foundry》 SCIE CAS 2011年第3期316-320,共5页
A novel hood structure has been designed for the dust control system in the foundry in order to improve the working environment. A composite strategy has been applied for comparative analysis of the optimal venting vo... A novel hood structure has been designed for the dust control system in the foundry in order to improve the working environment. A composite strategy has been applied for comparative analysis of the optimal venting volume and the airflow distribution between the conventional hood and the novel one in this study. A Computational Fluid Dynamic (CFD) method is used to simulate the airflow fields and dust-polluted air moving paths. The CFD results show that a two-outlet hood, with one outlet located on the left of the hood, is better for improving dust-polluted air than the hood with one outlet only. It can be concluded that the number of the outlets as well as their location on the hood has a significant influence on the air flow pattern in the hood. The optimal venting volume is also a major consideration that is discussed in the study. The venting volume should be designed by considering both the effective level of air flow velocity around the dust source and the energy saving. The optimal airflow distribution may reduce the turbulence in the hood system. 展开更多
关键词 venting volume air flow distribution HOOD flask shaker CFD
下载PDF
Numerical simulation of dust distribution at a fully mechanized face under the isolation effect of an air curtain 被引量:19
10
作者 Wang Pengfei Feng Tao Liu Ronghua 《Mining Science and Technology》 EI CAS 2011年第1期65-69,共5页
At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent.... At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent.The results show that the air curtain installed on the shearer can effectively prevent the dust (especially the respirable dust)from diffusing into the work area of the operator,reducing the dust concentration on the side of the operator and greatly improving his working environment.The field application of the air curtain shows that the dust-isolation effect of an air curtain is quite noticeable.The isolation efficiency for respiratory dust is over 70%and,as well,it has good dust-isolation effect for nonrespiratory dust.The air curtain is a useful way to resolve the problem of dust-isolation at a fully mechanized working face.It has a practical background elsewhere with more extensive applications. 展开更多
关键词 Fully mechanized face air curtain Dust distribution Numerical simulation Dust-isolation efficiency
下载PDF
Research on segregation evaluation methods of asphalt pavement based on air voids distribution 被引量:1
11
作者 徐科 张肖宁 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第4期548-551,共4页
Eye observation was used to evaluate the segregation degree of asphalt pavement, which was not much creditable. To the asphalt pavement, road surface texture measuring method which has appeared recently can identify g... Eye observation was used to evaluate the segregation degree of asphalt pavement, which was not much creditable. To the asphalt pavement, road surface texture measuring method which has appeared recently can identify gradational segregation; but it can’t reflect the influence of the temperature segregation. However, using infrared temperature detector to evaluate the segregation must be taken during paving, which brings much inconvenience. In this paper, measuring the air voids distribution using non-nuclear density gauge to evaluate asphalt pavement segregation was introduced. Result shows that this method can directly reflect the comprehensive results of the two types of segregation in a high efficient and accurate way. Moreover, using the sketch map of segregation area can help to analyze the segregation reason visually. 展开更多
关键词 segregation evaluation air voids distribution non-nuclear density gauge
下载PDF
Distribution characteristics of respiratory aerosols in enclosed environments 被引量:3
12
作者 高乃平 牛建磊 Lidia Morawska 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期232-237,共6页
This paper studies the spatial concentration distribution and temporal evolution of exhaled and sneezed/coughed droplets within the range of 1.0 to 10.0 μm in an office room with three air distribution methods,includ... This paper studies the spatial concentration distribution and temporal evolution of exhaled and sneezed/coughed droplets within the range of 1.0 to 10.0 μm in an office room with three air distribution methods,including mixing ventilation(MV),displacement ventilation(DV),and under-floor air distribution(UFAD).The simulation results indicate that exhaled droplets with diameters up to 10.0 μm from normal respiration process are uniformly distributed in MV.However,they become trapped at the breathing height by thermal stratifications in DV and UFAD,resulting in a high droplet concentration and an increased exposure risk to other occupants.Sneezed/coughed droplets are more slowly diluted in DV/UFAD than in MV.Low air speed in the breathing zone in DV/UFAD can lead to prolonged human exposure to droplets in the breathing zone. 展开更多
关键词 respiratory droplets displacement ventilation under-floor air distribution(UFAD) TRANSMISSION airborne disease
下载PDF
Airflow characteristics by air curtain jets in full-scale room 被引量:6
13
作者 尹海国 李安桂 《Journal of Central South University》 SCIE EI CAS 2012年第3期675-681,共7页
A new air distribution pattern,air curtain jet ventilation was presented.The ventilation or airflow patterns and the air velocity produced by air curtain jet were investigated in detail.To identify the airflow charact... A new air distribution pattern,air curtain jet ventilation was presented.The ventilation or airflow patterns and the air velocity produced by air curtain jet were investigated in detail.To identify the airflow characteristics of this novel air curtain jet ventilation system,a full-scale room was used to measure the jet velocity with a slot-ventilated supply device,with regards to the airflow fields along the vertical wall as well as on the horizontal floor zones.The airflow fields under three supply air velocities,1.0,1.5 and 2.0 m/s,were carried out in the full-scale room.The experimental results show the velocity profiles of air distribution,the airflow fields along the attached vertical wall and the air lake zones on the floor,respectively.The current experimental research is helpful for heating,ventilation and air conditioning(HVAC) engineers to design better air distribution in rooms. 展开更多
关键词 air distribution air curtain ventilation airflow fields
下载PDF
Adaptive Wall-Based Attachment Ventilation:A Comparative Study on Its Effectiveness in Airborne Infection Isolation Rooms with Negative Pressure 被引量:2
14
作者 Ying Zhang Ou Han +4 位作者 Angui Li Li’an Hou Thomas Olofsson Linhua Zhang Wenjun Lei 《Engineering》 SCIE EI 2022年第1期130-137,共8页
The transmission of coronavirus disease 2019(COVID-19)has presented challenges for the control of the indoor environment of isolation wards.Scientific air distribution design and operation management are crucial to en... The transmission of coronavirus disease 2019(COVID-19)has presented challenges for the control of the indoor environment of isolation wards.Scientific air distribution design and operation management are crucial to ensure the environmental safety of medical staff.This paper proposes the application of adaptive wall-based attachment ventilation and evaluates this air supply mode based on contaminants dispersion,removal efficiency,thermal comfort,and operating expense.Adaptive wall-based attachment ventilation provides a direct supply of fresh air to the occupied zone.In comparison with a ceiling air supply or upper sidewall air supply,adaptive wall-based attachment ventilation results in a 15%–47%lower average concentration of contaminants,for a continual release of contaminants at the same air changes per hour(ACH;10 h^(-1)).The contaminant removal efficiency of complete mixing ventilation cannot exceed 1.For adaptive wall-based attachment ventilation,the contaminant removal efficiency is an exponential function of the ACH.Compared with the ceiling air supply mode or upper sidewall air supply mode,adaptive wall-based attachment ventilation achieves a similar thermal comfort level(predicted mean vote(PMV)of0.1–0.4;draught rate of 2.5%–6.7%)and a similar performance in removing contaminants,but has a lower ACH and uses less energy. 展开更多
关键词 Ventilation efficiency air change rate COVID-19 Attachment ventilation air distribution Isolation ward
下载PDF
A Method of Assessing Parameters of Air-Void Structure in Air-Entrained Concretes
15
作者 Jerzy Wawrzeficzyk Wioletta Kozak 《Journal of Civil Engineering and Architecture》 2015年第7期798-806,共9页
The air-void size distribution and number of air voids are crucial characteristics of air-entrainment. The standard spacing factor L is based on the Powers model, in which considerable simplifications are assumed. A b... The air-void size distribution and number of air voids are crucial characteristics of air-entrainment. The standard spacing factor L is based on the Powers model, in which considerable simplifications are assumed. A better solution is provided by the Philleo factor, which determines the percentage content of protected paste located at a distance S from the edge of the nearest air void. Developing the concept put forward by Philleo, a method of determining the volume of protected paste on the basis of images generated from the numerical model of concrete grain structure including layout of aggregate-paste-air, is proposed. It is the ratio of the volume of the paste protected by air voids to the total paste volume. The PPV (protected paste volume) index accounts not only for sizes and number of air voids, but also for the role of aggregate particles in the placement of these pores, which is often disregarded in analyses. The PPV results obtained from image analysis were compared with standard spacing factor L and with the parameter developed by Philleo. The analyses conducted by the authors shows that accounting for aggregate grains in calculations substantially affects the assessment of the quality of the air-pore structure. 展开更多
关键词 distribution of air pore sizes distribution of aggregate grain sizes protected paste area numerical model of the porosity ofthe concrete.
下载PDF
Effect of cooling pad installation on indoor airflow distribution in a tunnel-ventilated laying-hen house 被引量:4
16
作者 Hui Xue Zhu Qiang +4 位作者 Ji-Qin Ni Li Baoming Shi Zhengxiang Zhao Shumei Wang Yu 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2016年第4期169-177,共9页
Extra cooling pads on the sidewalls are needed for larger poultry houses using tunnel ventilation system.Preliminary study showed that the airflow velocity going through different aisles varies greatly when the extra ... Extra cooling pads on the sidewalls are needed for larger poultry houses using tunnel ventilation system.Preliminary study showed that the airflow velocity going through different aisles varies greatly when the extra pads are installed at the end of sidewalls,making a“[”-shape air inlet.Combined with field tests,the CFD(computational fluid dynamics)technology was used to study the uniformity of airflow distribution in a tunnel-ventilated laying-hen house.The air distribution was first monitored in a layer house to find the main reason resulting in the variations of airflows in different aisles.Then CFD simulations were carried out with different distances(D=2 m,3 m or 4 m)between the pads on end-wall and the extra pads on side walls.The field test showed that airflow streams from the different groups of cooling pads collided vertically at the house corners,mixed with each other,then flew towards the center of the house.This was the main reason that the wind speed in the middle aisle was much higher than in other aisles,leaving large zones of lower ventilation in the aisles adjacent to the sidewalls.The results of CFD simulations indicated that air distributions could be significantly improved when the extra pieces of pads were moved away for an appropriate distance from the end coolingpads.As far as conventional poultry house with a span of 12 m,the air speeds in different aisles were more uniform when this distance was about 3 m. 展开更多
关键词 Pad cooling system air distribution air speed laying-hen house CFD
原文传递
Experimental Research on Plasma Induced by TEA CO_2 Laser Propulsion 被引量:2
17
作者 卢宏 程祖海 +3 位作者 左都罗 翟冰洁 余亮英 朱海红 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第2期203-206,共4页
Results in the air-breathing propulsion experiments with a parabolic light craft and a self-made UV-preionized 100 J TEA CO2 laser device are presented. Air disturbance and the spectrum of the plasma after the interac... Results in the air-breathing propulsion experiments with a parabolic light craft and a self-made UV-preionized 100 J TEA CO2 laser device are presented. Air disturbance and the spectrum of the plasma after the interaction of pulsed laser radiation with the light craft were studied. It was found that the focal length of the parabolic light craft had a significant effect on the air-disturbance. Two shock waves were detected for the longer focal length, while only one shock wave detected for the short focal length. The spectrum of the laser-induced plasma, the distribution of the characteristic lines, and the temporal behaviors of the air plasma were studied in detail. The results showed that, the evolution of the laser-induced plasma lasted 20μs, and the plasma spectrum would reach the maximum intensity at 7μs. 展开更多
关键词 laser propulsion TEA CO2 laser-induced plasma air distribution
下载PDF
CFD–DEM simulation of particle deposition characteristics of pleated air filter media based on porous media model 被引量:1
18
作者 Kaiwen Cheng Jingjing Zhu +3 位作者 Fuping Qian Bowen Cao Jinli Lu Yunlong Han 《Particuology》 SCIE EI CAS CSCD 2023年第1期37-48,共12页
In this study, the three-dimensional physical model of pleated air filtration media was simplified to porous media model, and the calculation parameters of porous media were obtained based on experimental data. The mo... In this study, the three-dimensional physical model of pleated air filtration media was simplified to porous media model, and the calculation parameters of porous media were obtained based on experimental data. The model of V-shaped pleated air filter media is constructed, the height of the media pleat is 50 mm and the pleat thickness is 4 mm, the pleat angle is 3.7°. The Hertz-Mindlin contact model was modified by Johnson Kendall Roberts (JKR) adhesion contact model. The deposition process of particles in media was simulated based on computational fluid dynamics (CFD) theory and discrete element method (DEM). Results show that the CFD–DEM coupling method can be effectively applied to the macro research of pleated air filter media. The particles will form dust layer and dendrite structure on the fiber surface, and the dust layer will affect the subsequent air flow organization, and the dendrite structure will eventually form a “particle wall”. The formation of the “particle wall” will prevent the particles from moving further in the fluid domain, which makes area of pleated angle become the “low efficiency” part about the particle deposition. Compared with area of pleated angle, the particles are concentrated in the opening area and the middle area of the pleated to agglomerate and deposit. 展开更多
关键词 Pleated air filter media CFD-DEM air distribution Deposition characteristics
原文传递
Rapid identification of single constant contaminant source by considering characteristics of real sensors
19
作者 蔡浩 李先庭 +2 位作者 孔令娟 马晓钧 邵晓亮 《Journal of Central South University》 SCIE EI CAS 2012年第3期593-599,共7页
For the release of hazardous contaminant indoors, source identification is critical for developing effective response measures. A method which can quickly and accurately identify the position, emission rate, and relea... For the release of hazardous contaminant indoors, source identification is critical for developing effective response measures. A method which can quickly and accurately identify the position, emission rate, and release time of a single constant contaminant source by using real sensors was presented. The method was numerically demonstrated and validated by a case study of contaminant release in a three-dimensional office. The effects of the measurement errors and total sampling period of sensor on the performance of source identification were thoroughly studied. The results indicate that the adverse effects of the measurement errors can be mitigated by extending the total sampling period. For reaching a desirable accuracy of source identification, the total sampling period should exceed a certain threshold, which can be determined by repeatedly running the identification method tmtil the results tend to be stable. The method presented can contribute to develop an onsite source identification system for protecting occupants from indoor releases. 展开更多
关键词 source identification contaminant source indoor environment computational fluid dynamics (CFD) air distribution
下载PDF
Thermal sensation and percentage of dissatisfied in thermal environments with positive and negative vertical air temperature differences
20
作者 Yuxin Wu Sheng Zhang +1 位作者 Hong Liu Yong Cheng 《Energy and Built Environment》 2023年第6期629-638,共10页
Considering the percentage of dissatisfied due to local thermal sensation(PD LTSV),a vertical air temperature difference(ΔT_(d))threshold of about 3°C was recommended in standards.However,some novel air distribu... Considering the percentage of dissatisfied due to local thermal sensation(PD LTSV),a vertical air temperature difference(ΔT_(d))threshold of about 3°C was recommended in standards.However,some novel air distribution methods might create large positive(which means the head warmer than the feet,vice versa)or negativeΔT_(d),with no suitable proved criteria to be used.In this study,sixteen subjects were seated in a climatic box placed in a climate chamber to evaluate thermal sensation and percentage of dissatisfied with negative and positiveΔT_(d) in different whole-body thermal conditions.Air temperatures were controlled independently at the upper and lower body parts,with 13 different air temperature sets combined with 22°C,25°C,28°C,and 31°C(i.e.-9°C≤ΔT_(d)≤9°C).Results showed that subjects were more thermally sensitive at the upper body and with positiveΔT_(d) than at the lower body or with negativeΔT_(d).The 80%acceptableΔT_(d) range is about-8 to 7°C in overall neutral(TSV=0),-7°C to 6°C in slightly cool(TSV=-0.5)conditions,which is wider than-3 to 3°C in slightly warm conditions(TSV=+0.5).By considering the factors of both TSV andΔT_(d),a new overall percentage of dissatisfied index(OPD P)was proposed.Case studies show that the new OPD P index is more precise and suitable for the evaluations of different air distributions to predict overall percentage of dissatisfied in thermal environments with vertical air temperature difference. 展开更多
关键词 Vertical air temperature difference Thermal sensation Thermal comfort Percentage of dissatisfied air distribution
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部