The main objective of this paper is to develop a simpleand efficient numerical model for estimation of heat and mass transfer between water spray drops and airstreamin horizontal parallel flow which enable us to accur...The main objective of this paper is to develop a simpleand efficient numerical model for estimation of heat and mass transfer between water spray drops and airstreamin horizontal parallel flow which enable us to accurateprediction of evaporative cooling performance.Thephysical process of a droplet evaporating in finite airflowhas been studied.Four basic differential equations havebeen developed with their numerical solutions providedby figures.展开更多
Air Washer are employed in large air-conditioning sys-tems for dust removal and for evaporative cooling withappropriate design which can result in energy saving.Topredict the heat and mass transfer in water spray-air-...Air Washer are employed in large air-conditioning sys-tems for dust removal and for evaporative cooling withappropriate design which can result in energy saving.Topredict the heat and mass transfer in water spray-air-flow system,a two-dimensional numerical model simu-lating the conservation of mass,momentum and energyof air and water are developed.Further,drop trajecto-ries in the case of horizontal parallel flow in air washerhave been simulated.The results of the simulations areused to investigate the effect of the initial droplet size,the spray angle and the airflow velocity on the drop ve-locity field and drop trajectories.展开更多
Numerical simulation method is applied in the study oftwo - phase flow dynamics in the eliminator of air wash-er. The carrier phase (air) is treated in Eulerian frame,the water droplets are tracked in the Lagrangian f...Numerical simulation method is applied in the study oftwo - phase flow dynamics in the eliminator of air wash-er. The carrier phase (air) is treated in Eulerian frame,the water droplets are tracked in the Lagrangian frame.A three - dimensional unsteady two - phase flow model isdeveloped. With the help of FLUENT software, air-stream velocity field and water droplets trajectories havebeen illustrated when their mixture passing through tra-ditional folded eliminator. The result of the simulationcan be used to investigate the mechanism of展开更多
As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments ...As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments are eagerly required. Herein a copper-based composite with WS2 and graphite as solid lubricant are fabricated by powder metallurgy hot-pressed method. The friction and wear behaviors of the composites with and without current are investigated under the condition with sliding velocity of 10 m/s and normal load of 2.5N/cm 2 in both air and vacuum. Morphologies of the worn surfaces are observed by optical microscope and compositions of the lubricating films are analyzed by XPS. Surface profile curves and roughness of the worn surfaces are obtained by 2205 surface profiler. The results of wear tests show that the friction coefficient and wear volume loss of the composites with current are greater than that without current in both air and vacuum due to the adverse effects of electrical current which damaged the lubricating film partially and roughed the worn surfaces. XPS results demonstrate that the lubricating film formed in air is composed of oxides of Cu, WS2 , elemental S and graphite, while the lubricating film formed in vacuum is composed of Cu, WS2 and graphite. Because of the synergetic lubricating action of oxides of Cu, WS2 and graphite, the composites show low friction coefficient and wear volume loss in air condition. Owing to the fact that graphite loses its lubricity which makes WS2 become the only lubricant, severe adhesive and abrasive wear occur and result in a high value of wear rate in vacuum condition. The formation of the lubricating film on the contact interface between the brush and ring is one of the factors which can greatly affect the wear performance of the brushes. The low contact voltage drop of the composites in vacuum condition is attributed to the high content of Cu in the surface film. This study fabricated a kind of new sliding electrical contact self-lubricating composite with dual-lubricant which can work well in both air and vacuum environments and provides a comprehensive analysis on the lubrication mechanisms of the composite.展开更多
文摘The main objective of this paper is to develop a simpleand efficient numerical model for estimation of heat and mass transfer between water spray drops and airstreamin horizontal parallel flow which enable us to accurateprediction of evaporative cooling performance.Thephysical process of a droplet evaporating in finite airflowhas been studied.Four basic differential equations havebeen developed with their numerical solutions providedby figures.
文摘Air Washer are employed in large air-conditioning sys-tems for dust removal and for evaporative cooling withappropriate design which can result in energy saving.Topredict the heat and mass transfer in water spray-air-flow system,a two-dimensional numerical model simu-lating the conservation of mass,momentum and energyof air and water are developed.Further,drop trajecto-ries in the case of horizontal parallel flow in air washerhave been simulated.The results of the simulations areused to investigate the effect of the initial droplet size,the spray angle and the airflow velocity on the drop ve-locity field and drop trajectories.
基金Supported by Development Foundation of Dong Hua Univetsity
文摘Numerical simulation method is applied in the study oftwo - phase flow dynamics in the eliminator of air wash-er. The carrier phase (air) is treated in Eulerian frame,the water droplets are tracked in the Lagrangian frame.A three - dimensional unsteady two - phase flow model isdeveloped. With the help of FLUENT software, air-stream velocity field and water droplets trajectories havebeen illustrated when their mixture passing through tra-ditional folded eliminator. The result of the simulationcan be used to investigate the mechanism of
基金supported by Major Research Program of National Natural Science Foundation of China(Grant No. 91026018)National Natural Science Foundation of China(Grant No. 60979017)Doctoral Fund of Ministry of Education of China(Grant No. 20110111110015)
文摘As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments are eagerly required. Herein a copper-based composite with WS2 and graphite as solid lubricant are fabricated by powder metallurgy hot-pressed method. The friction and wear behaviors of the composites with and without current are investigated under the condition with sliding velocity of 10 m/s and normal load of 2.5N/cm 2 in both air and vacuum. Morphologies of the worn surfaces are observed by optical microscope and compositions of the lubricating films are analyzed by XPS. Surface profile curves and roughness of the worn surfaces are obtained by 2205 surface profiler. The results of wear tests show that the friction coefficient and wear volume loss of the composites with current are greater than that without current in both air and vacuum due to the adverse effects of electrical current which damaged the lubricating film partially and roughed the worn surfaces. XPS results demonstrate that the lubricating film formed in air is composed of oxides of Cu, WS2 , elemental S and graphite, while the lubricating film formed in vacuum is composed of Cu, WS2 and graphite. Because of the synergetic lubricating action of oxides of Cu, WS2 and graphite, the composites show low friction coefficient and wear volume loss in air condition. Owing to the fact that graphite loses its lubricity which makes WS2 become the only lubricant, severe adhesive and abrasive wear occur and result in a high value of wear rate in vacuum condition. The formation of the lubricating film on the contact interface between the brush and ring is one of the factors which can greatly affect the wear performance of the brushes. The low contact voltage drop of the composites in vacuum condition is attributed to the high content of Cu in the surface film. This study fabricated a kind of new sliding electrical contact self-lubricating composite with dual-lubricant which can work well in both air and vacuum environments and provides a comprehensive analysis on the lubrication mechanisms of the composite.