The primarily designed high speed rotary self cleaning air filter adopted axial outlet and tangential inlet, the filtering efficiency of the filter was relative low and couldn't reach the lowest efficiency limit...The primarily designed high speed rotary self cleaning air filter adopted axial outlet and tangential inlet, the filtering efficiency of the filter was relative low and couldn't reach the lowest efficiency limit. In order to enhance the filtering efficiency, the inlet and outlet structure of this new style of air filter were improved and the experimental research was carried out. The results showed that the filtering efficiency of the filter exceeded the lowest limit, this new style air filter can be practically developed further.展开更多
The structure, separation principle and feasibility research for a new type of vehicle air filter called the high speed rotary positive air filter were described. The analysis of the experimental data showed that the ...The structure, separation principle and feasibility research for a new type of vehicle air filter called the high speed rotary positive air filter were described. The analysis of the experimental data showed that the principle and structure of it were feasible and it possessed high separation efficiency and great self cleaning ability. Compared with the conventional air filter it also has lower air intake loss. So it is worth further practical research.展开更多
Generation of polydisperse KCl aerosol with a new salt aerosol generator was investigated, Special attention was paid on particles with diameters between 3 and 10 μm. The main improvement consists of the different ro...Generation of polydisperse KCl aerosol with a new salt aerosol generator was investigated, Special attention was paid on particles with diameters between 3 and 10 μm. The main improvement consists of the different routes of KCl solution droplets. In traditional generators, the solution droplets travel through one cylinder; while in the case analyzed here, after spray atomization, the droplets travel through two cylinders in series. The first cylinder was fed with warm air and the second one with cold air. In such way, the complete evaporation of the water from the droplets can be ensured. The influencing factors of the generated aerosol size distribution were investigated. The data measured show that the concentration of generated aerosol becomes higher both increasing the flow rate of the KCI solution injected in the first cylinder and increasing the concentration in the solution. The temperature of solution influences mainly the generation of smaller KCI particles (0,3-3 μm). The amount of hot air used in the generation process increases the concentration of larger KC1 particles (〉3 μm) while cold air does not have the same effect. The aerosol generator is able to generate KC1 aerosol stably. This instrument can be used effectively for testing air filters for automotive.展开更多
Compressed air--a major industrial energy carrier, its filters are used to reach the required cleanliness level of compressed air. These filters, however, introduce a pressure drop which results in a loss of energy. I...Compressed air--a major industrial energy carrier, its filters are used to reach the required cleanliness level of compressed air. These filters, however, introduce a pressure drop which results in a loss of energy. It is shown that over the life cycle of a compressed air filter, the pressure drop dominates the total energy consumption and subsequently, the carbon footprint. From an economic as well as ecologic point of view, a reduction of the pressure drop is hence of utmost importance. Based on this finding and structuring, the wide range of applications and operational parameters, a pragmatic and technically feasible eco-labeling system for compressed air filters was developed as a decision supporting tool. Using this tool, procurement managers as well as the process engineers and environmental officers are able to steer the selection of suitable compressed air filters. The approach has been proposed to and discussed with various representatives of the compressed air filter industry nevertheless there is probably a long way to go to establish such a labeling procedure in industry.展开更多
In this study,air filter base paper(P)was used as the receiving substrate,polyvinyl alcohol(PVA)and PVA/multi-walled carbon nanotube(MWCNT)spinning solutions were used to prepare electrospun air filter papers(P-PVA an...In this study,air filter base paper(P)was used as the receiving substrate,polyvinyl alcohol(PVA)and PVA/multi-walled carbon nanotube(MWCNT)spinning solutions were used to prepare electrospun air filter papers(P-PVA and P-PVA/MWCNT,respectively).Then,P-PVA/MWCNT was calendered under different pressures.The effect of MWCNTs on the surface performance of P-PVA/MWCNT was explored and the influence of calendering technology on their structure and filtration characteristics was analyzed.Electron scanning microscope observation showed that the PVA nanofibers on the surface of P-PVA/MWCNT had no beading,and MWCNTs weakened the surface electrostatic phenomenon and had a good micromorphology.During the calendering process,with an increase in pressure,the mean pore size and surface roughness of P-PVA/MWCNT decreased,the initial resistance increased,and the filtration efficiency changed slightly.展开更多
In this paper,the manufacturing of high-efficiency air filter paper is reported.The air filter paper was produced using ultra-fine fibers and wateroat fibers mercerized by alkali,using an electrospinning apparatus wit...In this paper,the manufacturing of high-efficiency air filter paper is reported.The air filter paper was produced using ultra-fine fibers and wateroat fibers mercerized by alkali,using an electrospinning apparatus with multiple rings.The high efficiency air filter paper has an antibacterial effect after adding a chitosan-copper complex which is harmless to humans.As a result of the measurement,the filtering efficiency of the air filter paper is approximately 99.998%and its antibacterial efficiency is approximately 99.5%.展开更多
Passive cooling techniques are cost effective and reliable methods of cooling remote radio heads (RRH). This paper investigates the plausibility of a passive cooling technique involving exchanging warm air, from the i...Passive cooling techniques are cost effective and reliable methods of cooling remote radio heads (RRH). This paper investigates the plausibility of a passive cooling technique involving exchanging warm air, from the internal cavity of RRHs, with fresh ambient air, to reduce the operating temperature using natural convection across air filters. The results indicate that, an internal air filter tube structure, with width of the enclosure, running vertically up the middle of an RRH, along with 4 pleat filter sides (2.0 ± 0.5 cm separation) provides the most effective outdoor suitable setup out of those examined. This provides a reduction in temperature of 3.9°K ± 0.4°K in the PA and 4.0°K ± 0.4°K in the radio, and a reduction in mass of 0.45 ± 0.05 kg, and is capable of withstanding water ingress and corrosive conditions including wind driven rain and salt fog.展开更多
In this study, the three-dimensional physical model of pleated air filtration media was simplified to porous media model, and the calculation parameters of porous media were obtained based on experimental data. The mo...In this study, the three-dimensional physical model of pleated air filtration media was simplified to porous media model, and the calculation parameters of porous media were obtained based on experimental data. The model of V-shaped pleated air filter media is constructed, the height of the media pleat is 50 mm and the pleat thickness is 4 mm, the pleat angle is 3.7°. The Hertz-Mindlin contact model was modified by Johnson Kendall Roberts (JKR) adhesion contact model. The deposition process of particles in media was simulated based on computational fluid dynamics (CFD) theory and discrete element method (DEM). Results show that the CFD–DEM coupling method can be effectively applied to the macro research of pleated air filter media. The particles will form dust layer and dendrite structure on the fiber surface, and the dust layer will affect the subsequent air flow organization, and the dendrite structure will eventually form a “particle wall”. The formation of the “particle wall” will prevent the particles from moving further in the fluid domain, which makes area of pleated angle become the “low efficiency” part about the particle deposition. Compared with area of pleated angle, the particles are concentrated in the opening area and the middle area of the pleated to agglomerate and deposit.展开更多
We developed a high-efficiency rotating triboelectric nanogenerator (R-TENG)- enhanced multi.layered antibacterial polyimide (PI) nanofiber air filters for removing ultrafine particulate matter (PM) from ambient...We developed a high-efficiency rotating triboelectric nanogenerator (R-TENG)- enhanced multi.layered antibacterial polyimide (PI) nanofiber air filters for removing ultrafine particulate matter (PM) from ambient atmosphere. Compared to single- layered PI nanofiber filters, the multilayered nanofiber filter can completely remove all of the particles with diameters larger than 0.54 ffm and shows enhanced removal efficiency for smaller PM particles. After connecting with a R-TENG, the removal efficiency of the filer for ultrafine partides is further enhanced. The highest removal efficiency for ultrafine particulate matter is 94.1% at the diameter of 53.3 nm and the average removal efficiency reached 89.9%. Despite an increase in the layer number, the thickness of each individual layer of the film decreased, and hence, the total pressure drop of the filter decreased instead of increasing. Moreover, the nanofiber film exhibited high antibacterial activity because of the addition of a small amount of silver nanoparticles. This technology with zero ozone release and low pressure drop is appropriate for cleaning air, haze treatment, and bacterial control.展开更多
Particulate matter(PM)pollution has become a serious problem worldwide and various kinds of nanofibrous filters aiming to solve the problem have been developed.It is urgent to remove PM from high-temperature pollution...Particulate matter(PM)pollution has become a serious problem worldwide and various kinds of nanofibrous filters aiming to solve the problem have been developed.It is urgent to remove PM from high-temperature pollution sources,such as industrial emissions,coal furnaces,and automobile exhaust gases.However,filtration at pollution sources remains challenging because most existing air filters are not resistant to high temperature.Herein,heat-resistant polyimide(PI)nanofibrous air filters are fabricated via a simple and scalable solution blow-spinning method.These air filters show excellent thermal stability at high temperature up to 420℃.They exhibit a filtration efficiency as high as 99.73%at ambient temperature and over 97%at 300℃.In addition,a field test shows that the filters remove>97%of PM from the car exhaust fumes.Hence,the blow-spun PI nanofibrous membranes combined with the facile preparation strategy have great potential in high temperature air filtration fields and other similar applications such as water purification and protein separation.展开更多
As the supporting supplier of the main engine plant, the general air filter manufacturers have insufficient technical reserves. The structural optimization of air filter is often based on the bench experiment, which h...As the supporting supplier of the main engine plant, the general air filter manufacturers have insufficient technical reserves. The structural optimization of air filter is often based on the bench experiment, which has high implementation cost and poor performance. In view of this, taking computational fluid dynamics(CFD) as the basic technical means, an optimization design method based on parametric sensitivity combined with equidistant search was proposed. Specifically, the sensitivity of local structure parameters to pressure loss was analyzed by taking local structure of air filter as the object. According to the sensitivity, the method of equidistant search was used to optimize the parameters in order, so as to achieve the goal of overall optimization. After optimization, the pressure loss decreased by 45.13% and the effect was remarkable.展开更多
To simulate steady airflows inside of wall-flow diesel particulate filters (DPF) with different reverse blowing pipes collocation, a mathematical model of the flow in a DPF is established by an equivalent continuum ...To simulate steady airflows inside of wall-flow diesel particulate filters (DPF) with different reverse blowing pipes collocation, a mathematical model of the flow in a DPF is established by an equivalent continuum approach. The experimental results agree well with the theoretical values calculated from the model. Simulation shows that the velocity and the pressure distribution of the filters in the regenerative process are key factors to the filter's regeneration. How to decrease the mal-distribution of the flow in the filter and how to achieve the better regenerative performance at the least cost of air consumption in the regenerative process are the ultimate goals of the study. Calculation and experiments show that the goals can be realized through adjusting the angle of two reverse blowing pipes and their relative location suitably.展开更多
As global air pollution becomes increasingly severe,various types of fibrous filters have been developed to improve air filter performance.However,fibrous filters have limitations such as high packing density that gen...As global air pollution becomes increasingly severe,various types of fibrous filters have been developed to improve air filter performance.However,fibrous filters have limitations such as high packing density that generally causes high-pressure drop and ultimately deterioration in the filtration efficiency.High-pressure particulate matter precipitators are limited in terms of scope for commercialization because they require high voltage supplies and ozone generators.In this study,we develop fibrous filters with enhanced durability and improved performance using metallized microfibers decorated with metal-organic-framework(MOF)nanocrystals.Not only does the efficiency of the developed filters remain at or above 97%for 0.50-1.5μm PMs but the durability also significantly increases.In addition,using the water purification ability of the MOF,we explore the dye degradation effect of the hybrid microfibers by immersing them into Rhodamine B aqueous solution.In such an experiment the Rhodamine B aqueous solution is completely purified by the presence of the hybrid microfibers under the UV irradiation.展开更多
文摘The primarily designed high speed rotary self cleaning air filter adopted axial outlet and tangential inlet, the filtering efficiency of the filter was relative low and couldn't reach the lowest efficiency limit. In order to enhance the filtering efficiency, the inlet and outlet structure of this new style of air filter were improved and the experimental research was carried out. The results showed that the filtering efficiency of the filter exceeded the lowest limit, this new style air filter can be practically developed further.
文摘The structure, separation principle and feasibility research for a new type of vehicle air filter called the high speed rotary positive air filter were described. The analysis of the experimental data showed that the principle and structure of it were feasible and it possessed high separation efficiency and great self cleaning ability. Compared with the conventional air filter it also has lower air intake loss. So it is worth further practical research.
基金Project(2010EME006) supported by Open Fund of the Key Laboratory of Environmental Medicine Engineering of Ministry of Education of China Project(51008063) supported by the National Natural Science Foundation of China+1 种基金 Project(3203000601) supported by the Postdoctoral Key Research Program from Southeast University, China Project(2011BAJ03B05) supported by the National Science and Technology Pillar Program during the 12th Five-Year Plan Period of China
文摘Generation of polydisperse KCl aerosol with a new salt aerosol generator was investigated, Special attention was paid on particles with diameters between 3 and 10 μm. The main improvement consists of the different routes of KCl solution droplets. In traditional generators, the solution droplets travel through one cylinder; while in the case analyzed here, after spray atomization, the droplets travel through two cylinders in series. The first cylinder was fed with warm air and the second one with cold air. In such way, the complete evaporation of the water from the droplets can be ensured. The influencing factors of the generated aerosol size distribution were investigated. The data measured show that the concentration of generated aerosol becomes higher both increasing the flow rate of the KCI solution injected in the first cylinder and increasing the concentration in the solution. The temperature of solution influences mainly the generation of smaller KCI particles (0,3-3 μm). The amount of hot air used in the generation process increases the concentration of larger KC1 particles (〉3 μm) while cold air does not have the same effect. The aerosol generator is able to generate KC1 aerosol stably. This instrument can be used effectively for testing air filters for automotive.
文摘Compressed air--a major industrial energy carrier, its filters are used to reach the required cleanliness level of compressed air. These filters, however, introduce a pressure drop which results in a loss of energy. It is shown that over the life cycle of a compressed air filter, the pressure drop dominates the total energy consumption and subsequently, the carbon footprint. From an economic as well as ecologic point of view, a reduction of the pressure drop is hence of utmost importance. Based on this finding and structuring, the wide range of applications and operational parameters, a pragmatic and technically feasible eco-labeling system for compressed air filters was developed as a decision supporting tool. Using this tool, procurement managers as well as the process engineers and environmental officers are able to steer the selection of suitable compressed air filters. The approach has been proposed to and discussed with various representatives of the compressed air filter industry nevertheless there is probably a long way to go to establish such a labeling procedure in industry.
文摘In this study,air filter base paper(P)was used as the receiving substrate,polyvinyl alcohol(PVA)and PVA/multi-walled carbon nanotube(MWCNT)spinning solutions were used to prepare electrospun air filter papers(P-PVA and P-PVA/MWCNT,respectively).Then,P-PVA/MWCNT was calendered under different pressures.The effect of MWCNTs on the surface performance of P-PVA/MWCNT was explored and the influence of calendering technology on their structure and filtration characteristics was analyzed.Electron scanning microscope observation showed that the PVA nanofibers on the surface of P-PVA/MWCNT had no beading,and MWCNTs weakened the surface electrostatic phenomenon and had a good micromorphology.During the calendering process,with an increase in pressure,the mean pore size and surface roughness of P-PVA/MWCNT decreased,the initial resistance increased,and the filtration efficiency changed slightly.
文摘In this paper,the manufacturing of high-efficiency air filter paper is reported.The air filter paper was produced using ultra-fine fibers and wateroat fibers mercerized by alkali,using an electrospinning apparatus with multiple rings.The high efficiency air filter paper has an antibacterial effect after adding a chitosan-copper complex which is harmless to humans.As a result of the measurement,the filtering efficiency of the air filter paper is approximately 99.998%and its antibacterial efficiency is approximately 99.5%.
文摘Passive cooling techniques are cost effective and reliable methods of cooling remote radio heads (RRH). This paper investigates the plausibility of a passive cooling technique involving exchanging warm air, from the internal cavity of RRHs, with fresh ambient air, to reduce the operating temperature using natural convection across air filters. The results indicate that, an internal air filter tube structure, with width of the enclosure, running vertically up the middle of an RRH, along with 4 pleat filter sides (2.0 ± 0.5 cm separation) provides the most effective outdoor suitable setup out of those examined. This provides a reduction in temperature of 3.9°K ± 0.4°K in the PA and 4.0°K ± 0.4°K in the radio, and a reduction in mass of 0.45 ± 0.05 kg, and is capable of withstanding water ingress and corrosive conditions including wind driven rain and salt fog.
文摘In this study, the three-dimensional physical model of pleated air filtration media was simplified to porous media model, and the calculation parameters of porous media were obtained based on experimental data. The model of V-shaped pleated air filter media is constructed, the height of the media pleat is 50 mm and the pleat thickness is 4 mm, the pleat angle is 3.7°. The Hertz-Mindlin contact model was modified by Johnson Kendall Roberts (JKR) adhesion contact model. The deposition process of particles in media was simulated based on computational fluid dynamics (CFD) theory and discrete element method (DEM). Results show that the CFD–DEM coupling method can be effectively applied to the macro research of pleated air filter media. The particles will form dust layer and dendrite structure on the fiber surface, and the dust layer will affect the subsequent air flow organization, and the dendrite structure will eventually form a “particle wall”. The formation of the “particle wall” will prevent the particles from moving further in the fluid domain, which makes area of pleated angle become the “low efficiency” part about the particle deposition. Compared with area of pleated angle, the particles are concentrated in the opening area and the middle area of the pleated to agglomerate and deposit.
文摘We developed a high-efficiency rotating triboelectric nanogenerator (R-TENG)- enhanced multi.layered antibacterial polyimide (PI) nanofiber air filters for removing ultrafine particulate matter (PM) from ambient atmosphere. Compared to single- layered PI nanofiber filters, the multilayered nanofiber filter can completely remove all of the particles with diameters larger than 0.54 ffm and shows enhanced removal efficiency for smaller PM particles. After connecting with a R-TENG, the removal efficiency of the filer for ultrafine partides is further enhanced. The highest removal efficiency for ultrafine particulate matter is 94.1% at the diameter of 53.3 nm and the average removal efficiency reached 89.9%. Despite an increase in the layer number, the thickness of each individual layer of the film decreased, and hence, the total pressure drop of the filter decreased instead of increasing. Moreover, the nanofiber film exhibited high antibacterial activity because of the addition of a small amount of silver nanoparticles. This technology with zero ozone release and low pressure drop is appropriate for cleaning air, haze treatment, and bacterial control.
基金This study was supported by the National Natural Science Foundation of China(Nos.51788104 and 51661135025)the National Basic Research Program of China(No.2015CB932500)China Postdoctoral Science Foundation(Nos.2018M640124 and 2019T120083).
文摘Particulate matter(PM)pollution has become a serious problem worldwide and various kinds of nanofibrous filters aiming to solve the problem have been developed.It is urgent to remove PM from high-temperature pollution sources,such as industrial emissions,coal furnaces,and automobile exhaust gases.However,filtration at pollution sources remains challenging because most existing air filters are not resistant to high temperature.Herein,heat-resistant polyimide(PI)nanofibrous air filters are fabricated via a simple and scalable solution blow-spinning method.These air filters show excellent thermal stability at high temperature up to 420℃.They exhibit a filtration efficiency as high as 99.73%at ambient temperature and over 97%at 300℃.In addition,a field test shows that the filters remove>97%of PM from the car exhaust fumes.Hence,the blow-spun PI nanofibrous membranes combined with the facile preparation strategy have great potential in high temperature air filtration fields and other similar applications such as water purification and protein separation.
基金Supported by the General Plan Projects of Science and Technology of Jiangxi Provincial Department of Education(GJJ151161,GJJ180976)the Plan Projects of Science and Technology of Jiangxi Provincial Department of Science and Technology(20161BBE50053)the Foundation of the Center of Collaboration and Innovation(18XTKFYB03)
文摘As the supporting supplier of the main engine plant, the general air filter manufacturers have insufficient technical reserves. The structural optimization of air filter is often based on the bench experiment, which has high implementation cost and poor performance. In view of this, taking computational fluid dynamics(CFD) as the basic technical means, an optimization design method based on parametric sensitivity combined with equidistant search was proposed. Specifically, the sensitivity of local structure parameters to pressure loss was analyzed by taking local structure of air filter as the object. According to the sensitivity, the method of equidistant search was used to optimize the parameters in order, so as to achieve the goal of overall optimization. After optimization, the pressure loss decreased by 45.13% and the effect was remarkable.
基金This project is supported by National Hi-tech Research and DevelopmentProgram of China (863 Program, No.2003AA643010B).
文摘To simulate steady airflows inside of wall-flow diesel particulate filters (DPF) with different reverse blowing pipes collocation, a mathematical model of the flow in a DPF is established by an equivalent continuum approach. The experimental results agree well with the theoretical values calculated from the model. Simulation shows that the velocity and the pressure distribution of the filters in the regenerative process are key factors to the filter's regeneration. How to decrease the mal-distribution of the flow in the filter and how to achieve the better regenerative performance at the least cost of air consumption in the regenerative process are the ultimate goals of the study. Calculation and experiments show that the goals can be realized through adjusting the angle of two reverse blowing pipes and their relative location suitably.
基金supported by The National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2020R1A5A1018153)King Saud University,Riyadh,Saudi Arabia,for funding this work through Researchers Supporting Project number(RSP-2020/30)。
文摘As global air pollution becomes increasingly severe,various types of fibrous filters have been developed to improve air filter performance.However,fibrous filters have limitations such as high packing density that generally causes high-pressure drop and ultimately deterioration in the filtration efficiency.High-pressure particulate matter precipitators are limited in terms of scope for commercialization because they require high voltage supplies and ozone generators.In this study,we develop fibrous filters with enhanced durability and improved performance using metallized microfibers decorated with metal-organic-framework(MOF)nanocrystals.Not only does the efficiency of the developed filters remain at or above 97%for 0.50-1.5μm PMs but the durability also significantly increases.In addition,using the water purification ability of the MOF,we explore the dye degradation effect of the hybrid microfibers by immersing them into Rhodamine B aqueous solution.In such an experiment the Rhodamine B aqueous solution is completely purified by the presence of the hybrid microfibers under the UV irradiation.