The principle and development prospect of air source heat pump water heat were introduced,as well as the designation of condenser (storage water tank),experimental study on installations was also carried out.The resul...The principle and development prospect of air source heat pump water heat were introduced,as well as the designation of condenser (storage water tank),experimental study on installations was also carried out.The results showed that air source heat pump water heater was superior to conventional system.Under the operation of cooling and heating,heat pump comprehensive utilization equipment could improve heating performance,reduce energy consumption,and recycle condensing heat to provide hot water.展开更多
Natural energy use is important to reduce the energy consumption of buildings. However, further reducing energy consumption with traditional systems is difficult. Therefore, we proposed a MMHP (multi-source and multi...Natural energy use is important to reduce the energy consumption of buildings. However, further reducing energy consumption with traditional systems is difficult. Therefore, we proposed a MMHP (multi-source and multi-use heat pump) to achieve higher efficiency than traditional systems. The MMHP system connects multiple heat sources such as solar heat, the ground, and air and multiple heat uses such as cooling, heating, and a hot water dispenser with a water loop. Each type of heat use side can utilize heat efficiently. However, there is a distinct lack of highly efficient hot water dispensers available. Therefore, we developed the IHWD WS (instantaneous hot water dispenser based on a water source) heat pump. In this study, we developed a prototype of the IHWD WS heat pump. The coefficient of performance of the IHWD WS heat pump was 5.2-8.5 throughout a year. When it is improved, COP (coefficient of performance) is expected to be 9.3-9.9.展开更多
The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit ...The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit is about 1 kW, and the work refrigerant is R22/R407C/R410A/CO2. The MATLAB/SIMULINK software was employed to build the simulation model. The thermodynamic simulation model is significant for the optimization of parameters of the unit, such as condensation and evaporation temperature and mass flow of the sanitary hot water and size of hot water storage tank. The COP of the CCP of R410A system is about 3% - 5% higher than the CCP of the R22 system, while CCP of the R407C system is a little lower than the CCP of R22 system. And the CCP of CO2 trans-critical system has advantage in the hot supply mode. The simulation method provided a theoretical reference for developing the production of CCP with substitute refrigerant R407C/R410A/CO2.展开更多
A new type of microchannel condenser applied in the air source heat pump water heater(ASHPWH)with cyclic heating was proposed in this study.The operating performance of the ASHPWH was frst tested.Then,the structure of...A new type of microchannel condenser applied in the air source heat pump water heater(ASHPWH)with cyclic heating was proposed in this study.The operating performance of the ASHPWH was frst tested.Then,the structure of the microchannel condenser was optimized with the implement of vortex generators.Finally,a numerical model of the ASHPWH was established and the optimized microchannel condenser was studied.The experimental results showed that the average coefficient of performance(COP)of the 1HP(735 W)ASHPWH reached 3.48.In addition,the optimized microchannel condenser could be matched with a 3 HP(2430W)ASHPWH with an average heating capacity of 10.30 kW,and achieving an average COP of 4.24,14.6%higher than the limit value in the national standard.展开更多
Energy-saving air-conditioner with hot water is an air source heat pump air-conditioner,which can also supply hot water.The hot water is heated by a double pipe condenser connected with an air-cooled condenser in seri...Energy-saving air-conditioner with hot water is an air source heat pump air-conditioner,which can also supply hot water.The hot water is heated by a double pipe condenser connected with an air-cooled condenser in series in the system.This experiment of the energy-saving air-conditioner was carried out in the enthalpy-difference air-conditioner laboratory.The hot water temperature and the compressor's discharge and suction pressure were recorded in the working condition,where the ambient temperature was at 43 ℃,35 ℃,21 ℃,7 ℃,and 2 ℃ separately.The results showed that the system operated stably and reliably.This system can supply 240 L hot water at 50 ℃ in the whole year,and its coefficience of performance(COP)is much higher than the conventional air source heat pump system.Its energy conservation was proved by comparing the thermal efficiency with other sourece water heaters.展开更多
太阳能-空气源热泵热水系统(solar-air source heat pump hot water system, SAHWS)常用于宿舍楼宇供暖,通过对系统参数的优化设计可显著提高系统能效性能与环境友好性。为得到一种综合考虑SAHWS经济、能源、环保与节能的优化方法,提出...太阳能-空气源热泵热水系统(solar-air source heat pump hot water system, SAHWS)常用于宿舍楼宇供暖,通过对系统参数的优化设计可显著提高系统能效性能与环境友好性。为得到一种综合考虑SAHWS经济、能源、环保与节能的优化方法,提出了一种新型组合优化设计策略,并利用TRNSYS软件搭建系统仿真模型,以西安、西宁、拉萨这3座不同太阳能资源等级城市为例,对SAHWS运行工况对比分析。结果表明:与常用生命周期成本设计相比,所提出的组合优化设计不仅降低了系统成本,还有着较低的系统能耗;组合优化设计的热泵能耗与工作小时数最短,且有最低的热损,在投资成本、系统季节性能因子、太阳能保证率以及碳粉尘、二氧化碳排放量均有较好表现。展开更多
基金Supported by Scientific Research Fund of Ningxia University [(E) ndzr09-23]
文摘The principle and development prospect of air source heat pump water heat were introduced,as well as the designation of condenser (storage water tank),experimental study on installations was also carried out.The results showed that air source heat pump water heater was superior to conventional system.Under the operation of cooling and heating,heat pump comprehensive utilization equipment could improve heating performance,reduce energy consumption,and recycle condensing heat to provide hot water.
文摘Natural energy use is important to reduce the energy consumption of buildings. However, further reducing energy consumption with traditional systems is difficult. Therefore, we proposed a MMHP (multi-source and multi-use heat pump) to achieve higher efficiency than traditional systems. The MMHP system connects multiple heat sources such as solar heat, the ground, and air and multiple heat uses such as cooling, heating, and a hot water dispenser with a water loop. Each type of heat use side can utilize heat efficiently. However, there is a distinct lack of highly efficient hot water dispensers available. Therefore, we developed the IHWD WS (instantaneous hot water dispenser based on a water source) heat pump. In this study, we developed a prototype of the IHWD WS heat pump. The coefficient of performance of the IHWD WS heat pump was 5.2-8.5 throughout a year. When it is improved, COP (coefficient of performance) is expected to be 9.3-9.9.
文摘The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit is about 1 kW, and the work refrigerant is R22/R407C/R410A/CO2. The MATLAB/SIMULINK software was employed to build the simulation model. The thermodynamic simulation model is significant for the optimization of parameters of the unit, such as condensation and evaporation temperature and mass flow of the sanitary hot water and size of hot water storage tank. The COP of the CCP of R410A system is about 3% - 5% higher than the CCP of the R22 system, while CCP of the R407C system is a little lower than the CCP of R22 system. And the CCP of CO2 trans-critical system has advantage in the hot supply mode. The simulation method provided a theoretical reference for developing the production of CCP with substitute refrigerant R407C/R410A/CO2.
基金the National Natural Science Foundation of China(No.51776117)。
文摘A new type of microchannel condenser applied in the air source heat pump water heater(ASHPWH)with cyclic heating was proposed in this study.The operating performance of the ASHPWH was frst tested.Then,the structure of the microchannel condenser was optimized with the implement of vortex generators.Finally,a numerical model of the ASHPWH was established and the optimized microchannel condenser was studied.The experimental results showed that the average coefficient of performance(COP)of the 1HP(735 W)ASHPWH reached 3.48.In addition,the optimized microchannel condenser could be matched with a 3 HP(2430W)ASHPWH with an average heating capacity of 10.30 kW,and achieving an average COP of 4.24,14.6%higher than the limit value in the national standard.
基金Supported by Leading Academic Discipline Project of Shanghai Municipal Education Commission(J50502)
文摘Energy-saving air-conditioner with hot water is an air source heat pump air-conditioner,which can also supply hot water.The hot water is heated by a double pipe condenser connected with an air-cooled condenser in series in the system.This experiment of the energy-saving air-conditioner was carried out in the enthalpy-difference air-conditioner laboratory.The hot water temperature and the compressor's discharge and suction pressure were recorded in the working condition,where the ambient temperature was at 43 ℃,35 ℃,21 ℃,7 ℃,and 2 ℃ separately.The results showed that the system operated stably and reliably.This system can supply 240 L hot water at 50 ℃ in the whole year,and its coefficience of performance(COP)is much higher than the conventional air source heat pump system.Its energy conservation was proved by comparing the thermal efficiency with other sourece water heaters.
文摘太阳能-空气源热泵热水系统(solar-air source heat pump hot water system, SAHWS)常用于宿舍楼宇供暖,通过对系统参数的优化设计可显著提高系统能效性能与环境友好性。为得到一种综合考虑SAHWS经济、能源、环保与节能的优化方法,提出了一种新型组合优化设计策略,并利用TRNSYS软件搭建系统仿真模型,以西安、西宁、拉萨这3座不同太阳能资源等级城市为例,对SAHWS运行工况对比分析。结果表明:与常用生命周期成本设计相比,所提出的组合优化设计不仅降低了系统成本,还有着较低的系统能耗;组合优化设计的热泵能耗与工作小时数最短,且有最低的热损,在投资成本、系统季节性能因子、太阳能保证率以及碳粉尘、二氧化碳排放量均有较好表现。