期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Motion model for describing the quantity of air in droplets through changing the structure of air induction nozzle 被引量:1
1
作者 Jun Hu Changxi Liu +4 位作者 Zhichong Wang Yufei Li Jianli Song Yajia Liu Xin Chu 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第5期35-40,共6页
Air induction nozzles possess good anti-drift performance,the throat and orifice sizes of the nozzles are the main design parameters that affecting atomization.Therefore,Venturi tube nozzles and conventional flat fan ... Air induction nozzles possess good anti-drift performance,the throat and orifice sizes of the nozzles are the main design parameters that affecting atomization.Therefore,Venturi tube nozzles and conventional flat fan nozzles were assembled together to investigate the flow rate,droplet size,the quantity of air in droplets affected by a single design parameter of nozzles with applying high speed camera and Spraytec laser diffraction system.The results showed that:the flow rate of the air induction nozzle depended only on the throat size of Venturi tube and pressure,and it was proportional to the throat size of Venturi tube at the same pressure;The flat fan nozzle’s orifice size and Venturi tube size significantly affected volume median diameter of droplets,which generally increased after adding surfactant;A new model was established after optimizing classical equation for calculating the percentage of intake air in droplets and studying the effects of throat and orifice size of air induction nozzles on spray characteristics.By variance analysis,it was verified that the new model of quantity of air in droplets produced by all connected nozzles was correct.The calculation showed that the bubbles sizes ranged at 200-900μm and were in proportion to the droplet size with the percentage of intake air of 10%to 90%.Contrast to the change of volume median diameter and droplet velocity,the existence of intake air could influence their change degree to some extent. 展开更多
关键词 throat orifice spray characteristic model of droplet motion air induction nozzle
原文传递
Numerical investigation of frictional drag reduction with an air layer concept on the hull of a ship 被引量:4
2
作者 Jun Zhang Shuo Yang Jing Liu 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第3期591-604,共14页
A novel air bubble lubrication method using the winged air induction pipe (WAIP) device is used to reduce the frictional drag of the hull of the ship and hence increase the efficiency of the propulsion system. This bu... A novel air bubble lubrication method using the winged air induction pipe (WAIP) device is used to reduce the frictional drag of the hull of the ship and hence increase the efficiency of the propulsion system. This bubble lubrication technique utilizes the negative pressure region above the upper surface of the hydrofoil as the ship moves forward to drive air to the skin of the hull. In the present study, the reduction rate of the drag by applying the WAIP device is numerically investigated with the open source toolbox OpenFOAM. The generated air layer and the bubbles are observed. The numerical results indicate that the reduction rate of the drag closely depends on the depth of the submergence of the hydrofoil, the angle of attack of the hydrofoil, and the pressure in the air inlet. It is also proportional to the air flow rate. The underlying physics of the fluid dynamics is explored. 展开更多
关键词 Winged air induction pipe(WAIP) drag reduction frictional resistance reduction hull of ship OPENFOAM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部