To aim at design requirements of high lift-to-drag ratio as well as high volumetric efficiency of next generation hypersonic airplanes,a body-wing-blending configuration with double flanking air inlets layout is prese...To aim at design requirements of high lift-to-drag ratio as well as high volumetric efficiency of next generation hypersonic airplanes,a body-wing-blending configuration with double flanking air inlets layout is presented.Moreover,a novel forebody design methodology which by rotating and assembling two waverider-based surfaces is firstly introduced in this paper.Some typical configurations are designed and their aerodynamic performances are evaluated by computational fluid dynamics.The results for forebodies analysis show that large volumetric efficiency,high lift-to-drag ratio,and uniformly distributed flowfield at the inlet cross section can be assured simultaneously.Furthermore,results of numerical simulation of four integrated configurations with various leading edge shapes,including three power-law curves and a cosine curve clearly show the advantage of high lift-to-drag ratio.Besides,the high pressure generated by the side wall of the airframe can be partly captured by the reasonably designed wings in the condition of small flight attack angle.Then the order of lift-to-drag ratio of four configurations at 0 degree flight attack angle is completely different from the condition of 4-degree flight attack angle.This result demonstrates that the curve shape of the leading edge is very important for the lift-to-drag ratio of the aircraft,and it should be further optimized under the cruising attack angle in future work.展开更多
As one of the core components of turbocharger or micro-turbine, radial turbine has the features of small size and high rotation speed. In order to explore the design method and flow mechanism of the turbine with a vol...As one of the core components of turbocharger or micro-turbine, radial turbine has the features of small size and high rotation speed. In order to explore the design method and flow mechanism of the turbine with a volute, a centimeter-scale radial turbine with a vaneless air-inlet volute was designed and simulated numerically to investigate the characteristics of the coupled flow field. The results show that the wheel efficiency of single passage computation without the volute is 80.1%. After accounting for the factors of the loss caused by the volute and the interaction between each passage, the performance is more accurate according to the whole flow passage computation with the volute. High load region gathers at the mid-span and the efficiency declines to 76.6%. The performance of the volute whose structure angle of the trapezoid section is equal to 70 degree is better. Unlike uniform inlet condition in single passage, more appropriate inlet flow for the impeller is provided by the rectification effect of the volute in full passage calculation. Flow parameters are distributed more evenly along the blade span and are generally consistent between each passage at the outlet of the turbine.展开更多
This paper shows the effect of excess air on combustion gas temperature at turbine inlet, and how it determines power and thermal efficiency of a gas turbine at different pressure ratios and excess air. In such a way ...This paper shows the effect of excess air on combustion gas temperature at turbine inlet, and how it determines power and thermal efficiency of a gas turbine at different pressure ratios and excess air. In such a way an analytic Equation that allows calculating the turbine inlet temperature as a function of excess air, pressure ratio and relative humidity is given. Humidity Impact on excess air calculation is also analyzed and presented. Likewise it is demonstrated that dry air calculations determine a higher level for calculations that can be performed on wet air.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 90916013)the guidance and help from Academician Li Tian and peer reviewers are gratefully acknowledged
文摘To aim at design requirements of high lift-to-drag ratio as well as high volumetric efficiency of next generation hypersonic airplanes,a body-wing-blending configuration with double flanking air inlets layout is presented.Moreover,a novel forebody design methodology which by rotating and assembling two waverider-based surfaces is firstly introduced in this paper.Some typical configurations are designed and their aerodynamic performances are evaluated by computational fluid dynamics.The results for forebodies analysis show that large volumetric efficiency,high lift-to-drag ratio,and uniformly distributed flowfield at the inlet cross section can be assured simultaneously.Furthermore,results of numerical simulation of four integrated configurations with various leading edge shapes,including three power-law curves and a cosine curve clearly show the advantage of high lift-to-drag ratio.Besides,the high pressure generated by the side wall of the airframe can be partly captured by the reasonably designed wings in the condition of small flight attack angle.Then the order of lift-to-drag ratio of four configurations at 0 degree flight attack angle is completely different from the condition of 4-degree flight attack angle.This result demonstrates that the curve shape of the leading edge is very important for the lift-to-drag ratio of the aircraft,and it should be further optimized under the cruising attack angle in future work.
基金Supported by the Innovative Research Groups of the National Natural Science Foundation of China(No.51121004)the National Natural Science Foundation of China(No.50976026)
文摘As one of the core components of turbocharger or micro-turbine, radial turbine has the features of small size and high rotation speed. In order to explore the design method and flow mechanism of the turbine with a volute, a centimeter-scale radial turbine with a vaneless air-inlet volute was designed and simulated numerically to investigate the characteristics of the coupled flow field. The results show that the wheel efficiency of single passage computation without the volute is 80.1%. After accounting for the factors of the loss caused by the volute and the interaction between each passage, the performance is more accurate according to the whole flow passage computation with the volute. High load region gathers at the mid-span and the efficiency declines to 76.6%. The performance of the volute whose structure angle of the trapezoid section is equal to 70 degree is better. Unlike uniform inlet condition in single passage, more appropriate inlet flow for the impeller is provided by the rectification effect of the volute in full passage calculation. Flow parameters are distributed more evenly along the blade span and are generally consistent between each passage at the outlet of the turbine.
文摘This paper shows the effect of excess air on combustion gas temperature at turbine inlet, and how it determines power and thermal efficiency of a gas turbine at different pressure ratios and excess air. In such a way an analytic Equation that allows calculating the turbine inlet temperature as a function of excess air, pressure ratio and relative humidity is given. Humidity Impact on excess air calculation is also analyzed and presented. Likewise it is demonstrated that dry air calculations determine a higher level for calculations that can be performed on wet air.