In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about th...In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.展开更多
This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided i...This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).展开更多
Energy efficiency and environmental impact have become dominant topics in internal combustion engines development. Among many strategies to improve power and emissions outputs from diesel engines is the partial mix of...Energy efficiency and environmental impact have become dominant topics in internal combustion engines development. Among many strategies to improve power and emissions outputs from diesel engines is the partial mix of hydrogen and air as fresh charge components to form extremely lean and homogenous mixture, which resist the spontaneous combustion, while diesel fuel is injected directly inside combustion chamber using the conventional fuel injection systems. This contribution presents an analytical and experimental investigation for the effects of adding hydrogen on diesel engines power output and the reduction of emissions. Parametric analysis is used based on lamped parameters modeling of intake manifold to estimate in cylinder trapped charge. The fuel energy flow to engine cylinders is compared for a range of loads and concentrations to simulate relevant case studies. Diesel fuel reduction for significant range of part-load operation can be achieved by introducing hydrogen, along with power improvement emission reductions are affected positively as well. This is achievable without compromising the engine maximum efficiency, given that most engines are operated at small and part-load during normal driving conditions, which allow for introducing more hydrogen instead of large quantities of excess air during such operation conditions that also can be further improved by charge boosting.展开更多
Nozzle effects on thrust and inlet pressure of a multi-cycle air-breathing pulse detonation engine (APDE) are investigated experimentally. An APDE with 68 mm in diameter and 2 050 mm in length is operated using gaso...Nozzle effects on thrust and inlet pressure of a multi-cycle air-breathing pulse detonation engine (APDE) are investigated experimentally. An APDE with 68 mm in diameter and 2 050 mm in length is operated using gasoline/air mixture. Straight nozzle, converging nozzle, converging-diverging nozzle and diverging nozzle are tested. The results show that thrust augmentation of converging-diverging nozzle, diverging nozzle or straight nozzle is better than that of converging nozzle on the whole. Thrust augmentation of straight nozzle is worse than those of converging-diverging nozzle and diverging nozzle. Thrust augmentations of diverging nozzle with larger expansion ratio and converging-diverging nozzle with larger throat area range from 20% to 40% on tested frequencies and are better than those of congeneric other nozzles respectively. Nozzle effects on inlet pressure are also researched. At each frequency it is indicated that filling pressures and average peak pressures of inlet with diverging nozzle and converging-diverging nozzle with large throat cross section area are higher than those with straight nozzle and converging nozzle Pressures near thrust wall increase in an increase order from without nozzle, with diverging nozzle, straight nozzle and converging-diverging nozzle to converging nozzle.展开更多
The marine medium-speed diesel engines are started by two methods;one is the electric motors,and the other air starting motors.Even though air starting motor is dependent of the engine types and sizes,it has been wide...The marine medium-speed diesel engines are started by two methods;one is the electric motors,and the other air starting motors.Even though air starting motor is dependent of the engine types and sizes,it has been widely used in this area due to its simplicity,convenience and reliability.The purpose of this paper is to give the designing parameters in order to make a proper "Air Starting Motor" using CFD.The aerodynamic approaches were given to understand the internal flow characteristics of the air starting motor.In addition,we have carried out the investigation of effects of tip clearance.In the calculations the tip clearance of air starting motor has been varied between 0,2.8,4.3 and 5.7% of blade span.The results of computation are the tip clearance increased to 2.8%,the torque decreased 24%,and there was no more large changes when the clearances increased to 4.3% and 5.7%.展开更多
文摘In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.
文摘This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).
文摘Energy efficiency and environmental impact have become dominant topics in internal combustion engines development. Among many strategies to improve power and emissions outputs from diesel engines is the partial mix of hydrogen and air as fresh charge components to form extremely lean and homogenous mixture, which resist the spontaneous combustion, while diesel fuel is injected directly inside combustion chamber using the conventional fuel injection systems. This contribution presents an analytical and experimental investigation for the effects of adding hydrogen on diesel engines power output and the reduction of emissions. Parametric analysis is used based on lamped parameters modeling of intake manifold to estimate in cylinder trapped charge. The fuel energy flow to engine cylinders is compared for a range of loads and concentrations to simulate relevant case studies. Diesel fuel reduction for significant range of part-load operation can be achieved by introducing hydrogen, along with power improvement emission reductions are affected positively as well. This is achievable without compromising the engine maximum efficiency, given that most engines are operated at small and part-load during normal driving conditions, which allow for introducing more hydrogen instead of large quantities of excess air during such operation conditions that also can be further improved by charge boosting.
基金National Natural Science Foundation of China(50976094, 51176158)Reseach Fund for the Doctoral Program of Higher Education of China(20096102110022)Doctorate Foundation of Northwestern Polytechnical University (CX200909)
文摘Nozzle effects on thrust and inlet pressure of a multi-cycle air-breathing pulse detonation engine (APDE) are investigated experimentally. An APDE with 68 mm in diameter and 2 050 mm in length is operated using gasoline/air mixture. Straight nozzle, converging nozzle, converging-diverging nozzle and diverging nozzle are tested. The results show that thrust augmentation of converging-diverging nozzle, diverging nozzle or straight nozzle is better than that of converging nozzle on the whole. Thrust augmentation of straight nozzle is worse than those of converging-diverging nozzle and diverging nozzle. Thrust augmentations of diverging nozzle with larger expansion ratio and converging-diverging nozzle with larger throat area range from 20% to 40% on tested frequencies and are better than those of congeneric other nozzles respectively. Nozzle effects on inlet pressure are also researched. At each frequency it is indicated that filling pressures and average peak pressures of inlet with diverging nozzle and converging-diverging nozzle with large throat cross section area are higher than those with straight nozzle and converging nozzle Pressures near thrust wall increase in an increase order from without nozzle, with diverging nozzle, straight nozzle and converging-diverging nozzle to converging nozzle.
基金supported by the Post BK21 project of Ministry of Education,Science & Technology,and National Research Lab.of Korea Research Foundation of Korea (R0A-2008-000-20069-0)
文摘The marine medium-speed diesel engines are started by two methods;one is the electric motors,and the other air starting motors.Even though air starting motor is dependent of the engine types and sizes,it has been widely used in this area due to its simplicity,convenience and reliability.The purpose of this paper is to give the designing parameters in order to make a proper "Air Starting Motor" using CFD.The aerodynamic approaches were given to understand the internal flow characteristics of the air starting motor.In addition,we have carried out the investigation of effects of tip clearance.In the calculations the tip clearance of air starting motor has been varied between 0,2.8,4.3 and 5.7% of blade span.The results of computation are the tip clearance increased to 2.8%,the torque decreased 24%,and there was no more large changes when the clearances increased to 4.3% and 5.7%.