One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH f...One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO2- and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO]-]/[NO3] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.展开更多
To better understand vertical air mass exchange driven by local circulation in the Himalayas, the volume flux of air mass is estimated in the Rongbuk Valley on the northern slope of Mount Everest, based on a volume cl...To better understand vertical air mass exchange driven by local circulation in the Himalayas, the volume flux of air mass is estimated in the Rongbuk Valley on the northern slope of Mount Everest, based on a volume closure method and wind-profiler measurements during the HEST2006 campaign in June 2006. Vertical air mass exchange was found to be dominated by a strong downward mass transfer from the late morning to late night. The average vertical air volume flux was 0.09 m s-1, which could be equivalent to a daily ventilation of 30 times the enclosed valley volume. This vertical air mass exchange process was greatly affected by the evolution of the South Asian summer monsoon (SASM), with a strong downward transfer during the SASM break stage, and a weak transfer during the SASM active stage.展开更多
The consistency of global atmospheric mass and water budget performance in 20 state-of-the-art ocean-atmosphere Coupled Model Intercomparison Project Phase 5(CMIP5) coupled models has been assessed in a historical exp...The consistency of global atmospheric mass and water budget performance in 20 state-of-the-art ocean-atmosphere Coupled Model Intercomparison Project Phase 5(CMIP5) coupled models has been assessed in a historical experiment. All the models realistically reproduce a climatological annual mean of global air mass(AM) close to the ERA-Interim AM during 1989-2005. Surprisingly, the global AM in half of the models shows nearly no seasonal variation,which does not agree with the seasonal processes of global precipitable water or water vapor, given the mass conservation constraint. To better understand the inconsistencies, we evaluated the seasonal cycles of global AM tendency and water vapor source(evaporation minus precipitation). The results suggest that the inconsistencies result from the poor balance between global AM tendency and water vapor source based on the global AM budget equation. Moreover, the cross-equatorial dry air mass flux, or hemispheric dry mass divergence, is not well represented in any of the 20 CMIP5 models, which show a poorly matched seasonal cycle and notably larger amplitude, compared with the hemispheric tendencies of dry AM in both the Northern Hemisphere and Southern Hemisphere. Pronounced erroneous estimations of tropical precipitation also occur in these models. We speculate that the large inaccuracy of precipitation and possibly evaporation in the tropics is one of the key factors for the inconsistent cross-equatorial mass flux. A reasonable cross-equatorial mass flux in well-balanced hemispheric air mass and moisture budgets remains a challenge for both reanalysis assimilation systems and climate modeling.展开更多
The local convection initiation(CI)mechanisms of a convective case that occurred on5 August 2017 in Cangzhou,northern China,were studied using Doppler radar and automatic weather station observational analysis,along w...The local convection initiation(CI)mechanisms of a convective case that occurred on5 August 2017 in Cangzhou,northern China,were studied using Doppler radar and automatic weather station observational analysis,along with Variational Doppler Radar Analysis System assimilation analysis.During the convective process,a gust front appeared ahead of two existing convective systems,respectively.In the warm and moist environment ahead of the gust fronts in the south,there was a mesoscale air mass boundary.With the process of a gust front moving southward,approaching the mesoscale air mass boundary,the convergence intensified in the area between the gust front and the mesoscale air mass boundary.Finally,the strong convergent updraft exceeded the level of free convection and triggered the new convection.展开更多
In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorbe...In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorber (DVA) with an appropriate change in the ratio μ of the main mass and the absorber mass i.e. when mass ratio μ >> 1. Also the effect of variation of the mass ratio, air damping ratio and air spring rate ratio, on the motion transmissibility at the resonant frequency of the main mass of the DVA has been dis- cussed. It is shown that, as the air damping ratio in the absorber system increases, there is a substantial decrease in the motion transmissibility of the main mass system where the air damper has been modeled as a Maxwell type. Optimal value of the air damping ratio for the minimum motion transmissibility of the main mass of the system has been determined. An experimental setup has been designed and developed with a control system to vary air pressure in the damper in the absorber system. The motion transmissibility characteristics of the main mass system have been obtained, and the optimal value of the air damping ratio has been determined for minimum motion transmissibility of the main mass of the展开更多
The Northeast United States spring is indicative of major meteorological and biological change though the seasonal boundaries are difficult to define and may even be changing with global climate warming. This research...The Northeast United States spring is indicative of major meteorological and biological change though the seasonal boundaries are difficult to define and may even be changing with global climate warming. This research aims to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. The validity of recent speculations that the onset and termination of spring have changed in recent decades with global change is also examined. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are also isolated and assessed across the period of record to identify important changes in the season’s initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Prior to 1975, more polar air masses are detected while after 1975 more moderate and tropical types are identified. Late spring is characterized by increased variability in all moist air mass frequencies. These findings indicate that, from a synoptic perspective, the season is dry through time but modern springs are also warmer than those of past decades and the initiation of the season is likely arriving earlier. The end of the season represents more variable day-to-day air mass conditions in modern times than detected in past decades.展开更多
For a better understanding of the air mass exchange processes between the surface and free atmos-phere in the Himalayas,a Himalayan exchange between the surface and troposphere 2007 (HEST2007) campaign was carried out...For a better understanding of the air mass exchange processes between the surface and free atmos-phere in the Himalayas,a Himalayan exchange between the surface and troposphere 2007 (HEST2007) campaign was carried out in the Rongbuk Valley,on the northern slope of Mt.Qomolangma,in June 2007.The wind,tem-perature and radiation conditions were measured during the campaign.Using these observation data,together with the National Centers for Environmental Prediction/the National Center for Atmospheric Research (NCEP/NCAR) reanalysis data,the air mass exchange between the inside of the valley and the outside of the valley is quantitatively estimated,based on a closed-valley method.The air mass is strongly injected into the Rongbuk Valley in the after-noon,which dominates the diurnal cycle,by a strong downward along-valley wind,with a maximum down-ward transfer rate of 9.4 cm s?1.The total air volume flux injected into the valley was 2.6×1011 m3 d?1 in 24 hours in June 2007,which is 15 times the total volume of the val-ley.The air mass transfer into the valley also exhibited a clear daily variation during the HEST2007 campaign,which can be affected by the synoptic situations through the adjustment of local radiation conditions.展开更多
Air Washer are employed in large air-conditioning sys-tems for dust removal and for evaporative cooling withappropriate design which can result in energy saving.Topredict the heat and mass transfer in water spray-air-...Air Washer are employed in large air-conditioning sys-tems for dust removal and for evaporative cooling withappropriate design which can result in energy saving.Topredict the heat and mass transfer in water spray-air-flow system,a two-dimensional numerical model simu-lating the conservation of mass,momentum and energyof air and water are developed.Further,drop trajecto-ries in the case of horizontal parallel flow in air washerhave been simulated.The results of the simulations areused to investigate the effect of the initial droplet size,the spray angle and the airflow velocity on the drop ve-locity field and drop trajectories.展开更多
The main objective of this paper is to develop a simpleand efficient numerical model for estimation of heat and mass transfer between water spray drops and airstreamin horizontal parallel flow which enable us to accur...The main objective of this paper is to develop a simpleand efficient numerical model for estimation of heat and mass transfer between water spray drops and airstreamin horizontal parallel flow which enable us to accurateprediction of evaporative cooling performance.Thephysical process of a droplet evaporating in finite airflowhas been studied.Four basic differential equations havebeen developed with their numerical solutions providedby figures.展开更多
Aerosols represent an important source of terrestrial organic carbon(OC)from the East Asian continent to the China marginal seas,thus their provenance and transport play important roles in the global carbon cycle.Fift...Aerosols represent an important source of terrestrial organic carbon(OC)from the East Asian continent to the China marginal seas,thus their provenance and transport play important roles in the global carbon cycle.Fifty samples of total suspended particle were collected seasonally from the nearshore Huaniao Island(HNI)in East China Sea(ECS)from April 2018 to January 2019;and they were analyzed for total organic carbon(TOC)content and stable carbon isotope(δ^(13)C),as well as terrestrial bio-markers including n-alkanes(C_(20)-C_(33)),n-alkanols(C_(20)-C32)and n-fatty acids(n-FAs,C_(20)-C30),to distinguish the seasonal variabili-ties of terrestrial OC sources and reveal the influence of the long-range air mass transport on these sources.The TOC-δ^(13)C values(range from−27.3‰to−24.3‰)and molecular distributions of terrestrial biomarkers both suggested that terrestrial OC contribu-tions to aerosols had significant seasonal variations.The source indices of terrestrial biomarkers(e.g.,Fossil%=82.8%for n-alkanes)revealed that the fossil fuel OC contributions,including coal burning and vehicular emission,were higher in winter,mainly because of the long-range air mass transport from the north of the East Asian continent.The terrestrial plant OC contributions were higher in summer(e.g.,Wax%=32.4%for n-alkanes),likely due to local vegetation sources from HNI and East Asian continental air masses.Cluster analysis of air mass backward-trajectories clearly showed that transport pathway plays an important role in determining the organic constituents of aerosols in China marginal seas.A comparison of these terrestrial OC contributions from different air mass origins suggested that fossil fuel OC showed less variations among various air mass origins from northern China in winter,while terrestrial plant OC sources from northern and southern China in summer contributed more than that from the air masses transported through the ECS.These results provided a basis for future quantification of terrestrial OC from different origins in marine aerosols,by combining biomarker index and carbon isotopes.展开更多
Indian Central Water (ICW) and Subantarctic Mode Water (SAMW) formation rates are estimated from two air-sea flux products, the Comprehensive Ocean-Atmosphere Data Set (COADS) and the Southampton Oceanography Ce...Indian Central Water (ICW) and Subantarctic Mode Water (SAMW) formation rates are estimated from two air-sea flux products, the Comprehensive Ocean-Atmosphere Data Set (COADS) and the Southampton Oceanography Centre (SOC) climatology. The ICW formation is estimated to be 8 Sv (1 Sv = 106m3·s-1 ) from both products, with more contributions from freshwater flux. From the COADS product, the SAMW formation rate is estimated to be 31 Sv in the potential density range of 26.5-26.9σθ, with also a significant contribution from freshwater flux. However, the SAMW formation rate estimated from the SOC product is much smaller, which may be due to bias of the SOC heat flux. Poorer quality of the flux products in the Southern Ocean may also contribute to the difference.展开更多
Computed tomography (CT)-guided lung biopsy is a common diagnostic procedure that is associated with various complications, including pneumothorax, hemoptysis and parenchymal hemorrhage. Systemic air embolism is a ver...Computed tomography (CT)-guided lung biopsy is a common diagnostic procedure that is associated with various complications, including pneumothorax, hemoptysis and parenchymal hemorrhage. Systemic air embolism is a very rare (0.07%) but potentially lifethreatening complication. We report a fatal case of air embolism to the cerebral and coronary arteries confirmed by head and chest CT, followed by a review of the literature.展开更多
With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case,tu...With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case,turbulence-chemistry model and NOx formation model are the two most important aspects. For thermal NOx mechanism, this article studied the CH4/air system and applied a set of latest NO formation rate constants published at the Leed University which replaced the original model code in FLUENT to increase its precision on prediction of NO concentration. The realizable k-ε model, Reynold Stress model and standard k-ε model were also investigated to predict the turbulent combustion reaction, which indicated that the simulation results of velocities, temperatures and concentrations of combustion productions by the standard k-ε model were in good accordance with the experimental data. With the application of the simulation results to the experimental data to fit some important kinetic parameters in the equation of O atom model and revision of the equation later, this article obtained a new NO formation rate model. It has been proved that the prediction of the developed model coincides well with the measurements.展开更多
Externally pressurized spherical air bearings are the key component of the three-axis air bearing table, and the manufacturing errors of the bearing affects the performance of the air bearing table. However, the manuf...Externally pressurized spherical air bearings are the key component of the three-axis air bearing table, and the manufacturing errors of the bearing affects the performance of the air bearing table. However, the manufacturing errors are unavoidable, and the pursuit to enhance the manufacturing accuracy will increase the cost greatly. In order to provide some theoretical guideline for the tolerance choice in the design of the externally pressurized spherical air bearings with inherent compensation, the effects of several manufacturing errors on the static characteristics of the air bearing are studied. Due to the complex geometry of the computational domain, an unstructured meshing technology is used for mesh generation. A finite-volume method is adopted to discretize the three-dimensional steady-state compressible Navier-Stokes equations. A modified SIMPLE algorithm which is suitable for compressible flows is applied to solve the discretized governing equations. The effects of the dimension error and the roundness error of the ball head and the ball socket on the static characteristics are investigated. The investigation result shows that the positive dimension error and the oblate spheroid-type roundness error of the ball head as well as the negative dimension error and the prolate spheroid-type roundness error of the ball socket can improve the bearing capacity and static stiffness of the air bearings by reducing the mass flow. The calculation method proposed in this paper fits well for the general principle, which can be extended to the characteristics analysis of other air bearings.展开更多
Similar to coal, rock and gas ejections, rock mass tremors and rock bursts are among the most serious natural hazards accompanying the underground extraction of coal. Gas-dynamic phenomena caused by rock mass tremors ...Similar to coal, rock and gas ejections, rock mass tremors and rock bursts are among the most serious natural hazards accompanying the underground extraction of coal. Gas-dynamic phenomena caused by rock mass tremors and rock bursts observed as transient states of air parameters in mining headings,are usually generated as a result of a change in the geometry of headings and the release of considerable amounts of gases. Particular significance is attributed to transient states caused by disasters, which are often accompanied by rapid incidents, presenting threats to the life and health of the underground crew.In Polish mining there are known examples of transient states of air parameters recorded during gasdynamic phenomena, e.g. tremors and rock bursts. The paper presents the case studies of rapid seismic incidents to show how records in mine monitoring systems broaden the knowledge about the transient states of air parameters in mining headings generated because of them.展开更多
Many Chinese people leave big cities for family reunions during the Chinese New Year (CNY), which is the most important public holiday in China. However, how modem mass human migration during the CNY holiday affects...Many Chinese people leave big cities for family reunions during the Chinese New Year (CNY), which is the most important public holiday in China. However, how modem mass human migration during the CNY holiday affects the urban heat island (UHI) is still un- known. Here, the authors investigate the role of modem human migration for the UHI effects during the CNY holiday for the period of 1992-2006 in Harbin City, Northeast China. The results show that during the CNY week, the UHI effects expressed as daily mean, maxi- mum, and minimum temperature differences between urban and rural stations averaged over the period of 1992-2006 are 0.65℃ (43%), 0.31℃ (48%), and 1.14℃ (71%) lower than during the background period (four weeks before and four weeks after the CNY week), re- spectively. Our findings identify previously unknown impacts of modem mass human migration on the UHI effects based on a case study in Harbin City.展开更多
To improve the comfortability and safety of aircraft,the demand of rectangular submerged inlets(RSIs)with low resistance is proposed to increase the inlet flow rate of ram air. A theoretical model is built to numerica...To improve the comfortability and safety of aircraft,the demand of rectangular submerged inlets(RSIs)with low resistance is proposed to increase the inlet flow rate of ram air. A theoretical model is built to numerically analyze the effects of geometric parameters on the inlet mass flow rate of RSIs. The geometric parameters in question here encompass the aspect ratio of 2—4,the ramp angle of 6°—7°,the characteristic parameter of the throat of 0.20 —0.30,the ramp length of 939—1 337 mm,and the cone angle of 0° —3°. Simulation results demonstrate that the mass flow rate(MFR)is positively correlated with the aspect ratio,ramp angle,ramp length,and cone angle,and negatively correlated with characteristic parameter of the throat. Within the range of the geometric parameters considered,the RSI with the aspect ratio of 3,the ramp angle of 6°,the characteristic parameter of the throat of 0.20,the ramp length of 1 337 mm,and the cone angle of 3° obtains the largest MFR value of about 2.251 kg/s.展开更多
The evidences of the hidden mass boson existence are presented following the fruitful ideas of M. Planck and A. Einstein and using empirical data of modern physics. Within this article main parameters of this mass par...The evidences of the hidden mass boson existence are presented following the fruitful ideas of M. Planck and A. Einstein and using empirical data of modern physics. Within this article main parameters of this mass particle are predicted and its possible structure is analyzed. Moreover, the close system of nonlinear conservative equations and the spread system of Maxwell linear equations are written in the frame of phenomenological description of the hidden mass continuous medium. The displacement current, the Umov-Pointing vector and the physical vacuum polarization have been described adequately in our paper. We discuss some applications of our methodology for simulations of nature and technical device processes. In particular, numerical solutions for cosmic jets and air breathing engines are shown.展开更多
By simplifying the characters in the air reverse circulation bit interior fluid field, the authors used air dynamics and fluid mechanics to calculate the air distribution in the bit and obtained an equation of flow di...By simplifying the characters in the air reverse circulation bit interior fluid field, the authors used air dynamics and fluid mechanics to calculate the air distribution in the bit and obtained an equation of flow distribution with a unique resolution. This study will provide help for making certain the bit parameters of the bit structure effectively and study the air reverse circulation bit interior fluid field character deeply.展开更多
With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case, t...With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case, turbulence-chemistry model and NOx formation model are the two most important aspects. For thermal NOx mechanism, this article studied the CH4/air system and applied a set of latest NO formation rate constants published at the Leed University which replaced the original model code in FLUENT to increase its precision on prediction of NO concentration. The realizable k-ε model, Reynold Stress model and standard k-ε model were also investigated to predict the turbulent combustion reaction, which indicated that the simulation results of velocities, temperatures and concentrations of combustion productions by the standard k-ε model were in good accordance with the experi- mental data. With the application of the simulation results to the experimental data to fit some important kinetic pa- rameters in the equation of O atom model and revision of the equation later, this article obtained a new NO forma- tion rate model. It has been proved that the prediction of the developed model coincides well with the measure- ments.展开更多
基金supported by funds from the Scientific Research Projects of High-level Talents of the Department of Human Resources and Social Security of Anhui Province (Grant No.2009Z019)the State Key Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry (Grant No.LAPC-KF-201105)
文摘One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO2- and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO]-]/[NO3] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.
基金financed by the Ministry of Science and Technology of the People’s Republic of China (Grant No2009CB421403)the Chinese Academy of Sciences(Grant Nos KZCX2-YW-Q11-01 and LAPC-KF-2008-12)
文摘To better understand vertical air mass exchange driven by local circulation in the Himalayas, the volume flux of air mass is estimated in the Rongbuk Valley on the northern slope of Mount Everest, based on a volume closure method and wind-profiler measurements during the HEST2006 campaign in June 2006. Vertical air mass exchange was found to be dominated by a strong downward mass transfer from the late morning to late night. The average vertical air volume flux was 0.09 m s-1, which could be equivalent to a daily ventilation of 30 times the enclosed valley volume. This vertical air mass exchange process was greatly affected by the evolution of the South Asian summer monsoon (SASM), with a strong downward transfer during the SASM break stage, and a weak transfer during the SASM active stage.
基金Natural Science Foundation of Jiangsu Province grant(BK2012465)National Natural Science Foundation of China(41205065,41475045,41005046)+1 种基金National Basic Research Program of China(2010CB428602)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institution
文摘The consistency of global atmospheric mass and water budget performance in 20 state-of-the-art ocean-atmosphere Coupled Model Intercomparison Project Phase 5(CMIP5) coupled models has been assessed in a historical experiment. All the models realistically reproduce a climatological annual mean of global air mass(AM) close to the ERA-Interim AM during 1989-2005. Surprisingly, the global AM in half of the models shows nearly no seasonal variation,which does not agree with the seasonal processes of global precipitable water or water vapor, given the mass conservation constraint. To better understand the inconsistencies, we evaluated the seasonal cycles of global AM tendency and water vapor source(evaporation minus precipitation). The results suggest that the inconsistencies result from the poor balance between global AM tendency and water vapor source based on the global AM budget equation. Moreover, the cross-equatorial dry air mass flux, or hemispheric dry mass divergence, is not well represented in any of the 20 CMIP5 models, which show a poorly matched seasonal cycle and notably larger amplitude, compared with the hemispheric tendencies of dry AM in both the Northern Hemisphere and Southern Hemisphere. Pronounced erroneous estimations of tropical precipitation also occur in these models. We speculate that the large inaccuracy of precipitation and possibly evaporation in the tropics is one of the key factors for the inconsistent cross-equatorial mass flux. A reasonable cross-equatorial mass flux in well-balanced hemispheric air mass and moisture budgets remains a challenge for both reanalysis assimilation systems and climate modeling.
基金supported by the Beijing Municipal Science and Technology Project [grant number 2171100004417008]the National Natural Science Foundation of China [grant numbers 41575050,41875049,and 41805034]
文摘The local convection initiation(CI)mechanisms of a convective case that occurred on5 August 2017 in Cangzhou,northern China,were studied using Doppler radar and automatic weather station observational analysis,along with Variational Doppler Radar Analysis System assimilation analysis.During the convective process,a gust front appeared ahead of two existing convective systems,respectively.In the warm and moist environment ahead of the gust fronts in the south,there was a mesoscale air mass boundary.With the process of a gust front moving southward,approaching the mesoscale air mass boundary,the convergence intensified in the area between the gust front and the mesoscale air mass boundary.Finally,the strong convergent updraft exceeded the level of free convection and triggered the new convection.
文摘In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorber (DVA) with an appropriate change in the ratio μ of the main mass and the absorber mass i.e. when mass ratio μ >> 1. Also the effect of variation of the mass ratio, air damping ratio and air spring rate ratio, on the motion transmissibility at the resonant frequency of the main mass of the DVA has been dis- cussed. It is shown that, as the air damping ratio in the absorber system increases, there is a substantial decrease in the motion transmissibility of the main mass system where the air damper has been modeled as a Maxwell type. Optimal value of the air damping ratio for the minimum motion transmissibility of the main mass of the system has been determined. An experimental setup has been designed and developed with a control system to vary air pressure in the damper in the absorber system. The motion transmissibility characteristics of the main mass system have been obtained, and the optimal value of the air damping ratio has been determined for minimum motion transmissibility of the main mass of the
文摘The Northeast United States spring is indicative of major meteorological and biological change though the seasonal boundaries are difficult to define and may even be changing with global climate warming. This research aims to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. The validity of recent speculations that the onset and termination of spring have changed in recent decades with global change is also examined. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are also isolated and assessed across the period of record to identify important changes in the season’s initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Prior to 1975, more polar air masses are detected while after 1975 more moderate and tropical types are identified. Late spring is characterized by increased variability in all moist air mass frequencies. These findings indicate that, from a synoptic perspective, the season is dry through time but modern springs are also warmer than those of past decades and the initiation of the season is likely arriving earlier. The end of the season represents more variable day-to-day air mass conditions in modern times than detected in past decades.
基金financed by the National Natural Science Foundation of China (Grant No.40533018)the Ministry of Science and Technology of the People’s Republic of China (Grant No.2009CB421403)the Chinese Academy of Sciences (Grant Nos.KZCX3-SW-231 and 8-070203)
文摘For a better understanding of the air mass exchange processes between the surface and free atmos-phere in the Himalayas,a Himalayan exchange between the surface and troposphere 2007 (HEST2007) campaign was carried out in the Rongbuk Valley,on the northern slope of Mt.Qomolangma,in June 2007.The wind,tem-perature and radiation conditions were measured during the campaign.Using these observation data,together with the National Centers for Environmental Prediction/the National Center for Atmospheric Research (NCEP/NCAR) reanalysis data,the air mass exchange between the inside of the valley and the outside of the valley is quantitatively estimated,based on a closed-valley method.The air mass is strongly injected into the Rongbuk Valley in the after-noon,which dominates the diurnal cycle,by a strong downward along-valley wind,with a maximum down-ward transfer rate of 9.4 cm s?1.The total air volume flux injected into the valley was 2.6×1011 m3 d?1 in 24 hours in June 2007,which is 15 times the total volume of the val-ley.The air mass transfer into the valley also exhibited a clear daily variation during the HEST2007 campaign,which can be affected by the synoptic situations through the adjustment of local radiation conditions.
文摘Air Washer are employed in large air-conditioning sys-tems for dust removal and for evaporative cooling withappropriate design which can result in energy saving.Topredict the heat and mass transfer in water spray-air-flow system,a two-dimensional numerical model simu-lating the conservation of mass,momentum and energyof air and water are developed.Further,drop trajecto-ries in the case of horizontal parallel flow in air washerhave been simulated.The results of the simulations areused to investigate the effect of the initial droplet size,the spray angle and the airflow velocity on the drop ve-locity field and drop trajectories.
文摘The main objective of this paper is to develop a simpleand efficient numerical model for estimation of heat and mass transfer between water spray drops and airstreamin horizontal parallel flow which enable us to accurateprediction of evaporative cooling performance.Thephysical process of a droplet evaporating in finite airflowhas been studied.Four basic differential equations havebeen developed with their numerical solutions providedby figures.
基金This study was supported by the National Natural Science Foundation of China(No.U1706219).This is MCTL(Key Laboratory of Marine Chemistry Theory and Technology)contribution#237.
文摘Aerosols represent an important source of terrestrial organic carbon(OC)from the East Asian continent to the China marginal seas,thus their provenance and transport play important roles in the global carbon cycle.Fifty samples of total suspended particle were collected seasonally from the nearshore Huaniao Island(HNI)in East China Sea(ECS)from April 2018 to January 2019;and they were analyzed for total organic carbon(TOC)content and stable carbon isotope(δ^(13)C),as well as terrestrial bio-markers including n-alkanes(C_(20)-C_(33)),n-alkanols(C_(20)-C32)and n-fatty acids(n-FAs,C_(20)-C30),to distinguish the seasonal variabili-ties of terrestrial OC sources and reveal the influence of the long-range air mass transport on these sources.The TOC-δ^(13)C values(range from−27.3‰to−24.3‰)and molecular distributions of terrestrial biomarkers both suggested that terrestrial OC contribu-tions to aerosols had significant seasonal variations.The source indices of terrestrial biomarkers(e.g.,Fossil%=82.8%for n-alkanes)revealed that the fossil fuel OC contributions,including coal burning and vehicular emission,were higher in winter,mainly because of the long-range air mass transport from the north of the East Asian continent.The terrestrial plant OC contributions were higher in summer(e.g.,Wax%=32.4%for n-alkanes),likely due to local vegetation sources from HNI and East Asian continental air masses.Cluster analysis of air mass backward-trajectories clearly showed that transport pathway plays an important role in determining the organic constituents of aerosols in China marginal seas.A comparison of these terrestrial OC contributions from different air mass origins suggested that fossil fuel OC showed less variations among various air mass origins from northern China in winter,while terrestrial plant OC sources from northern and southern China in summer contributed more than that from the air masses transported through the ECS.These results provided a basis for future quantification of terrestrial OC from different origins in marine aerosols,by combining biomarker index and carbon isotopes.
文摘Indian Central Water (ICW) and Subantarctic Mode Water (SAMW) formation rates are estimated from two air-sea flux products, the Comprehensive Ocean-Atmosphere Data Set (COADS) and the Southampton Oceanography Centre (SOC) climatology. The ICW formation is estimated to be 8 Sv (1 Sv = 106m3·s-1 ) from both products, with more contributions from freshwater flux. From the COADS product, the SAMW formation rate is estimated to be 31 Sv in the potential density range of 26.5-26.9σθ, with also a significant contribution from freshwater flux. However, the SAMW formation rate estimated from the SOC product is much smaller, which may be due to bias of the SOC heat flux. Poorer quality of the flux products in the Southern Ocean may also contribute to the difference.
文摘Computed tomography (CT)-guided lung biopsy is a common diagnostic procedure that is associated with various complications, including pneumothorax, hemoptysis and parenchymal hemorrhage. Systemic air embolism is a very rare (0.07%) but potentially lifethreatening complication. We report a fatal case of air embolism to the cerebral and coronary arteries confirmed by head and chest CT, followed by a review of the literature.
文摘With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case,turbulence-chemistry model and NOx formation model are the two most important aspects. For thermal NOx mechanism, this article studied the CH4/air system and applied a set of latest NO formation rate constants published at the Leed University which replaced the original model code in FLUENT to increase its precision on prediction of NO concentration. The realizable k-ε model, Reynold Stress model and standard k-ε model were also investigated to predict the turbulent combustion reaction, which indicated that the simulation results of velocities, temperatures and concentrations of combustion productions by the standard k-ε model were in good accordance with the experimental data. With the application of the simulation results to the experimental data to fit some important kinetic parameters in the equation of O atom model and revision of the equation later, this article obtained a new NO formation rate model. It has been proved that the prediction of the developed model coincides well with the measurements.
基金supported by National Natural Science Foundation ofChina (Grant No. 50335010)
文摘Externally pressurized spherical air bearings are the key component of the three-axis air bearing table, and the manufacturing errors of the bearing affects the performance of the air bearing table. However, the manufacturing errors are unavoidable, and the pursuit to enhance the manufacturing accuracy will increase the cost greatly. In order to provide some theoretical guideline for the tolerance choice in the design of the externally pressurized spherical air bearings with inherent compensation, the effects of several manufacturing errors on the static characteristics of the air bearing are studied. Due to the complex geometry of the computational domain, an unstructured meshing technology is used for mesh generation. A finite-volume method is adopted to discretize the three-dimensional steady-state compressible Navier-Stokes equations. A modified SIMPLE algorithm which is suitable for compressible flows is applied to solve the discretized governing equations. The effects of the dimension error and the roundness error of the ball head and the ball socket on the static characteristics are investigated. The investigation result shows that the positive dimension error and the oblate spheroid-type roundness error of the ball head as well as the negative dimension error and the prolate spheroid-type roundness error of the ball socket can improve the bearing capacity and static stiffness of the air bearings by reducing the mass flow. The calculation method proposed in this paper fits well for the general principle, which can be extended to the characteristics analysis of other air bearings.
基金the implementation of task 2 of the subject “The aspects of environment and the safety of conducting underground work” of the statutory research of IMG PAN in the year 2018
文摘Similar to coal, rock and gas ejections, rock mass tremors and rock bursts are among the most serious natural hazards accompanying the underground extraction of coal. Gas-dynamic phenomena caused by rock mass tremors and rock bursts observed as transient states of air parameters in mining headings,are usually generated as a result of a change in the geometry of headings and the release of considerable amounts of gases. Particular significance is attributed to transient states caused by disasters, which are often accompanied by rapid incidents, presenting threats to the life and health of the underground crew.In Polish mining there are known examples of transient states of air parameters recorded during gasdynamic phenomena, e.g. tremors and rock bursts. The paper presents the case studies of rapid seismic incidents to show how records in mine monitoring systems broaden the knowledge about the transient states of air parameters in mining headings generated because of them.
基金supported by the National Natural Science Foundation of China(Grant Nos.41275089 and 41305071)the National Basic Research Program of China(Grant No.2012CB955604)Jingyong ZHANG was supported by the Jiangsu Collaborative Innovation Center for Climate Change
文摘Many Chinese people leave big cities for family reunions during the Chinese New Year (CNY), which is the most important public holiday in China. However, how modem mass human migration during the CNY holiday affects the urban heat island (UHI) is still un- known. Here, the authors investigate the role of modem human migration for the UHI effects during the CNY holiday for the period of 1992-2006 in Harbin City, Northeast China. The results show that during the CNY week, the UHI effects expressed as daily mean, maxi- mum, and minimum temperature differences between urban and rural stations averaged over the period of 1992-2006 are 0.65℃ (43%), 0.31℃ (48%), and 1.14℃ (71%) lower than during the background period (four weeks before and four weeks after the CNY week), re- spectively. Our findings identify previously unknown impacts of modem mass human migration on the UHI effects based on a case study in Harbin City.
基金supported by the Open Project of Key Laboratory of Aircraft Environment Control and Life Support,MIIT(No.KLAECLS-E-202001)。
文摘To improve the comfortability and safety of aircraft,the demand of rectangular submerged inlets(RSIs)with low resistance is proposed to increase the inlet flow rate of ram air. A theoretical model is built to numerically analyze the effects of geometric parameters on the inlet mass flow rate of RSIs. The geometric parameters in question here encompass the aspect ratio of 2—4,the ramp angle of 6°—7°,the characteristic parameter of the throat of 0.20 —0.30,the ramp length of 939—1 337 mm,and the cone angle of 0° —3°. Simulation results demonstrate that the mass flow rate(MFR)is positively correlated with the aspect ratio,ramp angle,ramp length,and cone angle,and negatively correlated with characteristic parameter of the throat. Within the range of the geometric parameters considered,the RSI with the aspect ratio of 3,the ramp angle of 6°,the characteristic parameter of the throat of 0.20,the ramp length of 1 337 mm,and the cone angle of 3° obtains the largest MFR value of about 2.251 kg/s.
文摘The evidences of the hidden mass boson existence are presented following the fruitful ideas of M. Planck and A. Einstein and using empirical data of modern physics. Within this article main parameters of this mass particle are predicted and its possible structure is analyzed. Moreover, the close system of nonlinear conservative equations and the spread system of Maxwell linear equations are written in the frame of phenomenological description of the hidden mass continuous medium. The displacement current, the Umov-Pointing vector and the physical vacuum polarization have been described adequately in our paper. We discuss some applications of our methodology for simulations of nature and technical device processes. In particular, numerical solutions for cosmic jets and air breathing engines are shown.
基金Jilin Province Science and Technology Development Leading Project(No.200405033)
文摘By simplifying the characters in the air reverse circulation bit interior fluid field, the authors used air dynamics and fluid mechanics to calculate the air distribution in the bit and obtained an equation of flow distribution with a unique resolution. This study will provide help for making certain the bit parameters of the bit structure effectively and study the air reverse circulation bit interior fluid field character deeply.
文摘With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case, turbulence-chemistry model and NOx formation model are the two most important aspects. For thermal NOx mechanism, this article studied the CH4/air system and applied a set of latest NO formation rate constants published at the Leed University which replaced the original model code in FLUENT to increase its precision on prediction of NO concentration. The realizable k-ε model, Reynold Stress model and standard k-ε model were also investigated to predict the turbulent combustion reaction, which indicated that the simulation results of velocities, temperatures and concentrations of combustion productions by the standard k-ε model were in good accordance with the experi- mental data. With the application of the simulation results to the experimental data to fit some important kinetic pa- rameters in the equation of O atom model and revision of the equation later, this article obtained a new NO forma- tion rate model. It has been proved that the prediction of the developed model coincides well with the measure- ments.