Acute toxicity of 0.3 ppm mercuric chloride on the mucocytes of the branchial diverticulum and skin of Heteropneustes fossilis results in cyclic increases followed by decreases in the density, area occupancy and volum...Acute toxicity of 0.3 ppm mercuric chloride on the mucocytes of the branchial diverticulum and skin of Heteropneustes fossilis results in cyclic increases followed by decreases in the density, area occupancy and volume at different intervals of exposure. The alterations in the two tissues do not follow the same path perhaps due to different modes of action of the mercury salt: The skin comes under direct contact effects, while the branchial diverticulum may be affected by hormonal imbalance caused by a stress effect.展开更多
A novel, functionalized bubble surface can be obtained in dissolved air flotation (DAF) by dosing chemicals in the saturator. In this study, different cationic chemicals were used as bubble surface modifiers, and th...A novel, functionalized bubble surface can be obtained in dissolved air flotation (DAF) by dosing chemicals in the saturator. In this study, different cationic chemicals were used as bubble surface modifiers, and their effects on natural organic matter (NOM) removal from river water were investigated. NOM in the samples was fractionated based on molecular weight and hydrophobicity. The disinfection byproduct formation potentials of each fraction and their removal efficiencies were also evaluated. The results showed that chitosan was the most promising bubble modifier compared with a surfactant and a synthetic polymer. Tiny bubbles in the OAF pump system facilitated the adsorption of chitosan onto microbubble surfaces. The hydrophobic NOM fraction was preferentially removed by chitosan-modified bubbles. Decreasing the recycle water pH from 7.0 to 5.5 improved the removal of hydrophilic NOM with low molecular weight. Likewise, hydrophilic organic compounds gave high dihaloacetic acid yields in raw water. An enhanced reduction of haloacetic acid precursors was obtained with recycle water at pH values of 5.5 and 4.0. The experimental results indicate that NOM fractions may interact with bubbles through different mechanisms. Positive bubble modification provides an alternative approach for OAF to enhance NOM removal.展开更多
A factor separation technique and an improved regional air quality model (RAQM) were applied to calculate synergistic contributions of anthropogenic volatile organic compounds (AVOCs),biogenic volatile organic com...A factor separation technique and an improved regional air quality model (RAQM) were applied to calculate synergistic contributions of anthropogenic volatile organic compounds (AVOCs),biogenic volatile organic compounds (BVOCs) and nitrogen oxides (NOx) to daily maximum surface O3(O3DM) concentrations in East Asia in summer (June to August 2000).The summer averaged synergistic impacts of AVOCs and NOx are dominant in most areas of North China,with a maximum of 60 ppbv,while those of BVOCs and NOx are notable only in some limited areas with high BVOC emissions in South China,with a maximum of 25 ppbv.This result implies that BVOCs contribute much less to summer averaged O3DM concentrations than AVOCs in most areas of East Asia at a coarse spatial resolution (1×1) although global emissions of BVOCs are much greater than those of AVOCs.Daily maximum total contributions of BVOCs can approach 20 ppbv in North China,but they can reach 40 ppbv in South China,approaching or exceeding those in some developed countries in Europe and North America.BVOC emissions in such special areas should be considered when O3 control measures are taken.Synergistic contributions among AVOCs,BVOCs and NOx significantly enhance O3 concentrations in the Beijing-Tianjin-Tangshan region and decrease them in some areas in South China.Thus,the total contributions of BVOCs to O3DM vary significantly from day to day and from location to location.This result suggests that O3 control measures obtained from episodic studies could be limited for long-term applications.展开更多
文摘Acute toxicity of 0.3 ppm mercuric chloride on the mucocytes of the branchial diverticulum and skin of Heteropneustes fossilis results in cyclic increases followed by decreases in the density, area occupancy and volume at different intervals of exposure. The alterations in the two tissues do not follow the same path perhaps due to different modes of action of the mercury salt: The skin comes under direct contact effects, while the branchial diverticulum may be affected by hormonal imbalance caused by a stress effect.
基金Acknowledgements This research is fimded by the National Natural Science Foundation of China (Grant No. 51378141) and the Science and Technology Department of Heilongjiang Province, China (Grant No. PS13H05). The authors would like to express thanks to their friends operating the Huainan first water treatment plant for their generous support. Sincerest thanks also to the staff at the Central Laboratory of Huainan Capital Water for their support in water sample analysis.
文摘A novel, functionalized bubble surface can be obtained in dissolved air flotation (DAF) by dosing chemicals in the saturator. In this study, different cationic chemicals were used as bubble surface modifiers, and their effects on natural organic matter (NOM) removal from river water were investigated. NOM in the samples was fractionated based on molecular weight and hydrophobicity. The disinfection byproduct formation potentials of each fraction and their removal efficiencies were also evaluated. The results showed that chitosan was the most promising bubble modifier compared with a surfactant and a synthetic polymer. Tiny bubbles in the OAF pump system facilitated the adsorption of chitosan onto microbubble surfaces. The hydrophobic NOM fraction was preferentially removed by chitosan-modified bubbles. Decreasing the recycle water pH from 7.0 to 5.5 improved the removal of hydrophilic NOM with low molecular weight. Likewise, hydrophilic organic compounds gave high dihaloacetic acid yields in raw water. An enhanced reduction of haloacetic acid precursors was obtained with recycle water at pH values of 5.5 and 4.0. The experimental results indicate that NOM fractions may interact with bubbles through different mechanisms. Positive bubble modification provides an alternative approach for OAF to enhance NOM removal.
基金supported by the National Natural Science Foundation of China(No.40905055,41175105)the Key Project of the Chinese Academy of Sciences(No.KZCX1-YW-06-04)
文摘A factor separation technique and an improved regional air quality model (RAQM) were applied to calculate synergistic contributions of anthropogenic volatile organic compounds (AVOCs),biogenic volatile organic compounds (BVOCs) and nitrogen oxides (NOx) to daily maximum surface O3(O3DM) concentrations in East Asia in summer (June to August 2000).The summer averaged synergistic impacts of AVOCs and NOx are dominant in most areas of North China,with a maximum of 60 ppbv,while those of BVOCs and NOx are notable only in some limited areas with high BVOC emissions in South China,with a maximum of 25 ppbv.This result implies that BVOCs contribute much less to summer averaged O3DM concentrations than AVOCs in most areas of East Asia at a coarse spatial resolution (1×1) although global emissions of BVOCs are much greater than those of AVOCs.Daily maximum total contributions of BVOCs can approach 20 ppbv in North China,but they can reach 40 ppbv in South China,approaching or exceeding those in some developed countries in Europe and North America.BVOC emissions in such special areas should be considered when O3 control measures are taken.Synergistic contributions among AVOCs,BVOCs and NOx significantly enhance O3 concentrations in the Beijing-Tianjin-Tangshan region and decrease them in some areas in South China.Thus,the total contributions of BVOCs to O3DM vary significantly from day to day and from location to location.This result suggests that O3 control measures obtained from episodic studies could be limited for long-term applications.