Background: Ambient (outdoor) air pollution has been implicated as a major cause of acute cardiovascular and pulmonary illnesses and increased risk for acute and chronic effects after chronic exposures, including mort...Background: Ambient (outdoor) air pollution has been implicated as a major cause of acute cardiovascular and pulmonary illnesses and increased risk for acute and chronic effects after chronic exposures, including mortality and morbidity. In 2008, due to persistent health concerns about its workforce and their dependents, the US Mission in China began monitoring air quality at the US Embassy in Beijing. Subsequently, monitoring stations were also established at US consulates at Shanghai (2011), Guangzhou (2011), Chengdu (2012), and Shenyang (2013). Objectives: To determine whether there have been definable trends in air quality in these five Chinese cities. Methods: Air monitoring results from each locale for accumulated PM2.5 particulate matter were calculated hourly. Accumulated data were organized, culled using a standardized set of heuristics, and analyzed for trends. Results: China’s capital city, Beijing, experienced decreased PM2.5 from 2013 through 2015, but no significant long-term downward trend from 2008 through 2015. Shanghai has not shown any definable air quality trend since 2012. Chengdu experienced some improvement in air quality since 2013, but none discernible from 2012 through 2015. Guangzhou had generally better air quality, and a downward trend since 2012. Shenyang experienced increasingly severe air pollution from 2013 through 2015. Conclusion: There appear to have been recent tangible, though modest, improvements in air quality in three large Chinese cities: Beijing, Chengdu, and Guangzhou, but no apparent progress in Shanghai, and a worrisome decline in air quality observed in Shenyang. Despite recent progress, there is a long way to go before even the cities which show improvement reach Chinese standards.展开更多
The concentrations of phthalate esters(PAEs) in Chinese hospitals were investigated by simultaneously determining concentrations of gas- and particle-phase PAEs. PAEs were detected in two third-class first-grade hos...The concentrations of phthalate esters(PAEs) in Chinese hospitals were investigated by simultaneously determining concentrations of gas- and particle-phase PAEs. PAEs were detected in two third-class first-grade hospitals, two second-class first-grade hospitals, and a community health service center. Hospital drugstores had the highest concentration(24.19 μg/m3), which was 1.54 times that of newly decorated houses. The second highest concentration was found in the transfusion rooms, averaging 21.89 μg/m3; this was followed by the concentrations of PAEs in the nurse's workstations, the wards, and the doctor's offices, with mean concentrations of 20.66, 20.0, and 16.92 μg/m3, respectively. The lowest concentrations were found in the hallways(16.30 μg/m3). Of the six different kinds of PAEs found, major pollutants included diethyl phthalates, dibutyl phthalates, butylbenzyl phthalates and di(2-ethylhexyl) phthalates, comprising more than 80% of all PAEs present.Meanwhile, a comparison between different wards showed that PAE concentrations in the maternity wards were 1.63 times higher than in the main wards. Based on known health hazards, our results suggest that the PAEs seriously influence the health of the pregnant women and babies; therefore, it is of great importance to take the phthalate concentrations in hospitals into consideration. In addition, hospital indoor air was more seriously contaminated than the air of newly decorated houses.展开更多
Due to the increasingly stringent standards, it is important to assess whether the proposed emission reduction will result in ambient concentrations that meet the standards. The Software for Model Attainment Test-Comm...Due to the increasingly stringent standards, it is important to assess whether the proposed emission reduction will result in ambient concentrations that meet the standards. The Software for Model Attainment Test-Community Edition (SMAT-CE) is developed for demonstrating attainment of air quality standards of O3 and PM2.5. SMAT-CE improves computational efficiency and provides a number of advanced visualization and analytical functionalities on an integrated GIS platform. SMAT-CE incorporates historical measurements of air quality parameters and simulated air pollutant concentrations under a number of emission inventory scenarios to project the level of compliance to air quality standards in a targeted future year. An application case study of the software based on the U.S. National Ambient Air Quality Standards (NAAQS) shows that SMAT-CE is capable of demonstrating the air quality attainment of annual PM2.5 and 8-hour O3 for a proposed emission control policy.展开更多
文摘Background: Ambient (outdoor) air pollution has been implicated as a major cause of acute cardiovascular and pulmonary illnesses and increased risk for acute and chronic effects after chronic exposures, including mortality and morbidity. In 2008, due to persistent health concerns about its workforce and their dependents, the US Mission in China began monitoring air quality at the US Embassy in Beijing. Subsequently, monitoring stations were also established at US consulates at Shanghai (2011), Guangzhou (2011), Chengdu (2012), and Shenyang (2013). Objectives: To determine whether there have been definable trends in air quality in these five Chinese cities. Methods: Air monitoring results from each locale for accumulated PM2.5 particulate matter were calculated hourly. Accumulated data were organized, culled using a standardized set of heuristics, and analyzed for trends. Results: China’s capital city, Beijing, experienced decreased PM2.5 from 2013 through 2015, but no significant long-term downward trend from 2008 through 2015. Shanghai has not shown any definable air quality trend since 2012. Chengdu experienced some improvement in air quality since 2013, but none discernible from 2012 through 2015. Guangzhou had generally better air quality, and a downward trend since 2012. Shenyang experienced increasingly severe air pollution from 2013 through 2015. Conclusion: There appear to have been recent tangible, though modest, improvements in air quality in three large Chinese cities: Beijing, Chengdu, and Guangzhou, but no apparent progress in Shanghai, and a worrisome decline in air quality observed in Shenyang. Despite recent progress, there is a long way to go before even the cities which show improvement reach Chinese standards.
基金supported by a grant from the National Science Foundation of China (No. 20977075)the National High Technology Research and Development Program of China (863) (No. 2010AA064902)
文摘The concentrations of phthalate esters(PAEs) in Chinese hospitals were investigated by simultaneously determining concentrations of gas- and particle-phase PAEs. PAEs were detected in two third-class first-grade hospitals, two second-class first-grade hospitals, and a community health service center. Hospital drugstores had the highest concentration(24.19 μg/m3), which was 1.54 times that of newly decorated houses. The second highest concentration was found in the transfusion rooms, averaging 21.89 μg/m3; this was followed by the concentrations of PAEs in the nurse's workstations, the wards, and the doctor's offices, with mean concentrations of 20.66, 20.0, and 16.92 μg/m3, respectively. The lowest concentrations were found in the hallways(16.30 μg/m3). Of the six different kinds of PAEs found, major pollutants included diethyl phthalates, dibutyl phthalates, butylbenzyl phthalates and di(2-ethylhexyl) phthalates, comprising more than 80% of all PAEs present.Meanwhile, a comparison between different wards showed that PAE concentrations in the maternity wards were 1.63 times higher than in the main wards. Based on known health hazards, our results suggest that the PAEs seriously influence the health of the pregnant women and babies; therefore, it is of great importance to take the phthalate concentrations in hospitals into consideration. In addition, hospital indoor air was more seriously contaminated than the air of newly decorated houses.
基金provided by the U.S. Environmental Protection Agency (Subcontract Number OR13810-001.04 A10-0223-S001-A04)partly supported by the funding of Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (No. 2011A060901011)+1 种基金the funding of State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex (No. SCAPC201308)the project of Atmospheric Haze Collaborative Control System Design (No. XDB05030400) from Chinese Academy of Sciences
文摘Due to the increasingly stringent standards, it is important to assess whether the proposed emission reduction will result in ambient concentrations that meet the standards. The Software for Model Attainment Test-Community Edition (SMAT-CE) is developed for demonstrating attainment of air quality standards of O3 and PM2.5. SMAT-CE improves computational efficiency and provides a number of advanced visualization and analytical functionalities on an integrated GIS platform. SMAT-CE incorporates historical measurements of air quality parameters and simulated air pollutant concentrations under a number of emission inventory scenarios to project the level of compliance to air quality standards in a targeted future year. An application case study of the software based on the U.S. National Ambient Air Quality Standards (NAAQS) shows that SMAT-CE is capable of demonstrating the air quality attainment of annual PM2.5 and 8-hour O3 for a proposed emission control policy.