Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using...Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and charac-teristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.展开更多
In recent 20 years, energy saving has been done in many projects. However, in pneumatic system, it is not easy to determine or measure the air power flow because of the compressibility of pneumatic system. In this pap...In recent 20 years, energy saving has been done in many projects. However, in pneumatic system, it is not easy to determine or measure the air power flow because of the compressibility of pneumatic system. In this paper, we used air power meter (APM) to measure the energy consumption of flow in pneumatic cylinder actuator system. Meter-in circuit and meter-out circuit of speed control system are used in this research. The model of cylinder system is based on four equations: state equation of air, energy equation, motion equation and flow equation. The model estimates the pressure change in charge and discharge side of cylinder, and also the displacement and velocity of the piston. Furthermore, energy consumption could theoretically be calculated when the change of air state is regarded as isothermal change. Lastly, some data of these two circuits are shown, and the consumption of energy is discussed.展开更多
Dielectric-barrier discharges (DBDs) in atmospheric pressure air have been studied by using a power-frequency voltage source. In this paper the electrical characteristics of DBDs us- ing glass and alumina dielectric...Dielectric-barrier discharges (DBDs) in atmospheric pressure air have been studied by using a power-frequency voltage source. In this paper the electrical characteristics of DBDs us- ing glass and alumina dielectrics have been investigated experimentally. According to the Lissajous figures of voltage-charges, it is discovered that the discharge power for an alumina dielectric is much higher than that for a glass dielectric at the same applied voltage. Also~ the voltage-current curves of the glass and alumina dielectrics confirm the fact that the dielectric barriers behave like semiconducting materials at certain applied voltages.展开更多
Pneumatic-hydraulic transmission has been developed for years. However, its dynamic properties are not good enough for application. In this paper, in order to increase the output characteristics, a late-model air-powe...Pneumatic-hydraulic transmission has been developed for years. However, its dynamic properties are not good enough for application. In this paper, in order to increase the output characteristics, a late-model air-powered vehicle using expansion energy is proposed which can boost energy through a pneumatic-hydraulic transmission. The dynamic characteristics of the air-powered vehicle is modeled and verified by conducting experiment. In addition,the influence of the key parameters of the air-powered vehicle is researched for the optimization of the system performance. Through the results, the author got the conclusion that, firstly, comparison of the results of model and experiment proves the built model to be effective; secondly, input air pressure should be set according to the request of the practical loads, and range of 0.65 to 0.75 MPa can be chosen; thirdly, as a key structure parameter of the airpowered vehicle, ratio of the areas is considered to be set to approximate 8; what’s more, a bigger orifice with a limit will promote the system dynamic characteristic property, and the limit is about 3.5 mm; last but not the least, not too farther position of the rings will increase the quality of output dynamic characteristics. This paper can be a reference for system design of air-powered vehicle and dynamic improvement.展开更多
A novel air-powered twin-rotor piston engine(ATPE) utilizing a differential velocity driving mechanism to achieve a high output torque was proposed.The ATPE had eight separated rotary cylinders which can dynamically e...A novel air-powered twin-rotor piston engine(ATPE) utilizing a differential velocity driving mechanism to achieve a high output torque was proposed.The ATPE had eight separated rotary cylinders which can dynamically enlarge the engine displacement as a result of the special driving mechanism,which was named dynamic volume expansion.The mathematical model of ATPE comprising a dynamic model and a thermodynamic model was established under the assumption of no mechanical friction.The model was numerically simulated in Matlab.The results show that shortage of low output torque confusing traditional air-powered engines can be overcome.The average output torque sharply increases to 100 N·m,which is about three times that of traditional air-powered engines with equal cylinder displacement under the pressure of 0.6 MPa at 480 r/min.ATPE can be used to drive vehicles directly without transmission box,therefore the energy transfer efficiency of ATPE can be increased.Furthermore,benefitting from the novel gas distribution system,the engine shows an ability in self-adjusting under different loads.The arrangements of air ports automatically adjust the open interval of air ports according to the load,which may simplify the speed control system.展开更多
In this study an energy and exergy analysis is made of moist air, it is used the psychometrics charts. A Visual Basic program is used to generate psychometrics charts. These charts are used to analyze the air thermody...In this study an energy and exergy analysis is made of moist air, it is used the psychometrics charts. A Visual Basic program is used to generate psychometrics charts. These charts are used to analyze the air thermodynamic behavior, considering the environmental variations, pressure, temperature and relative humidity. Also, the available energy in the cooling processes at constant enthalpy, humidification at constant temperature and heating with constant relative humidity is analyzed. For example, we obtained that the enthalpy and exergy in a thermodynamic state, with conditions, Patm = 1.013 bar, Tatm = 25oC and Φatm=50%, are h = 50.56 kJ/kga and ε =11.5 kJ/kga;and for Patm= 0.77 bar to the same conditions of Tatm and Φatm, the enthalpy and exergy increases in a 14% and 20%, respectively.展开更多
The Dabancheng Windpower Farm in Northwest China’s Xinjiang Uygur Autonomous Region, the largest of its kind in China, plans to increase its present generating capacity of 10 MW to 100 MW by the year 2000. Situated i...The Dabancheng Windpower Farm in Northwest China’s Xinjiang Uygur Autonomous Region, the largest of its kind in China, plans to increase its present generating capacity of 10 MW to 100 MW by the year 2000. Situated in the vast desert to the southeast of Urumqi, capital city of Xinjiang, the farm has bountiful wind energy resources, with wind speeds as high as 38 metres per second. First built with the help of Danish Government loans in 1992, the farm now provides electricity for local people, especially those in remote areas which are not connected to a power grid. The farm is now seeking both domestic and overseas cooperation for technological improvements and expansion, according展开更多
As the conceptual design of air-conditioning is done using the theory of Quality Function Deployment (QFD),cus- tomer requirements should be understood and the product competitive power be analyzed as exactly as possi...As the conceptual design of air-conditioning is done using the theory of Quality Function Deployment (QFD),cus- tomer requirements should be understood and the product competitive power be analyzed as exactly as possible for new product de- signing.Lots of information in the process of this research is fuzzy and uncertain,but traditional QFD can not deal with it well. Fuzzy theory can solve the problem.So a fuzzy model for analyzing product competitive power is formulated in this paper to im- prove traditional QFD,after that it is applied to analyze air-conditioning competitive power.When air-conditioning competitive power is analyzed using this model,firstly the importance weight of the customer requirements o fair-conditioning is determined us- ing the Analytic Hierarchy Process (AHP) weighting process,then air-conditloning competitive power is evaluated using fuzzy comprehensive evaluation.It is proved that the model is feasible and has good applicability.展开更多
Given the distribution feature of resources such as coal and water, the requirements for the development of Chinese power industry, and the fact of monopoly by foreign companies, it is very necessary and significant t...Given the distribution feature of resources such as coal and water, the requirements for the development of Chinese power industry, and the fact of monopoly by foreign companies, it is very necessary and significant to independently research and develop air-cooling technologies. Through experimental research, simulative calculation, process and equipment development, field tests and a demonstration project, the design and operation technologies for air-cooling system are grasped and relevant key equipment is developed. The results of the demonstration project show that the technical indicators for the air-cooling system have met or exceeded the design requirements. Part of the research results have been incorporated into the relevant national design standards. The technologies developed have been applied to more than 23 sets of thermal power units of or above 600 MW in China.展开更多
The 300 MW steam turbine installed in Waigaoqiao Power Plant with combined HPIP cylinders of double casing structure is a product of the Shanghai Turbine Works utilizing licensed technology. It has a large heat storag...The 300 MW steam turbine installed in Waigaoqiao Power Plant with combined HPIP cylinders of double casing structure is a product of the Shanghai Turbine Works utilizing licensed technology. It has a large heat storage capacity and good thermal insulation, so the metal temperature of first stage of HP cylinder (FSMTI) may reach 400-450℃ after shut down and it takes 7-8 days to cool to 150℃ by natural cooling, Now with a forced cooling system the cooling time may be reduced to 40 hours, so that the turbine may be opened for repair work in about 5-6 days. The cooling system for #2 unit and test procedure are briefly described below.展开更多
The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV...The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV experiments are carried out and recirculation ratio of each condition is calculated. Results show that the thermal flow field of the cooling tower has great influence on the recirculation under the cooling tower. Ameliorating the thermal flow field of the cooling tower can reduce the recirculation under the cooling tower and improve the efficiency of air-cooled condenser also.展开更多
文摘Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and charac-teristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.
文摘In recent 20 years, energy saving has been done in many projects. However, in pneumatic system, it is not easy to determine or measure the air power flow because of the compressibility of pneumatic system. In this paper, we used air power meter (APM) to measure the energy consumption of flow in pneumatic cylinder actuator system. Meter-in circuit and meter-out circuit of speed control system are used in this research. The model of cylinder system is based on four equations: state equation of air, energy equation, motion equation and flow equation. The model estimates the pressure change in charge and discharge side of cylinder, and also the displacement and velocity of the piston. Furthermore, energy consumption could theoretically be calculated when the change of air state is regarded as isothermal change. Lastly, some data of these two circuits are shown, and the consumption of energy is discussed.
基金supported by Anhui Provincial Natural Science Foundation of China(No.11040606M27)
文摘Dielectric-barrier discharges (DBDs) in atmospheric pressure air have been studied by using a power-frequency voltage source. In this paper the electrical characteristics of DBDs us- ing glass and alumina dielectrics have been investigated experimentally. According to the Lissajous figures of voltage-charges, it is discovered that the discharge power for an alumina dielectric is much higher than that for a glass dielectric at the same applied voltage. Also~ the voltage-current curves of the glass and alumina dielectrics confirm the fact that the dielectric barriers behave like semiconducting materials at certain applied voltages.
基金Supported by National Natural Science Foundation of China(Grant No.51375028)
文摘Pneumatic-hydraulic transmission has been developed for years. However, its dynamic properties are not good enough for application. In this paper, in order to increase the output characteristics, a late-model air-powered vehicle using expansion energy is proposed which can boost energy through a pneumatic-hydraulic transmission. The dynamic characteristics of the air-powered vehicle is modeled and verified by conducting experiment. In addition,the influence of the key parameters of the air-powered vehicle is researched for the optimization of the system performance. Through the results, the author got the conclusion that, firstly, comparison of the results of model and experiment proves the built model to be effective; secondly, input air pressure should be set according to the request of the practical loads, and range of 0.65 to 0.75 MPa can be chosen; thirdly, as a key structure parameter of the airpowered vehicle, ratio of the areas is considered to be set to approximate 8; what’s more, a bigger orifice with a limit will promote the system dynamic characteristic property, and the limit is about 3.5 mm; last but not the least, not too farther position of the rings will increase the quality of output dynamic characteristics. This paper can be a reference for system design of air-powered vehicle and dynamic improvement.
基金Projects(51105365,51475464)supported by the National Natural Science Foundation of China
文摘A novel air-powered twin-rotor piston engine(ATPE) utilizing a differential velocity driving mechanism to achieve a high output torque was proposed.The ATPE had eight separated rotary cylinders which can dynamically enlarge the engine displacement as a result of the special driving mechanism,which was named dynamic volume expansion.The mathematical model of ATPE comprising a dynamic model and a thermodynamic model was established under the assumption of no mechanical friction.The model was numerically simulated in Matlab.The results show that shortage of low output torque confusing traditional air-powered engines can be overcome.The average output torque sharply increases to 100 N·m,which is about three times that of traditional air-powered engines with equal cylinder displacement under the pressure of 0.6 MPa at 480 r/min.ATPE can be used to drive vehicles directly without transmission box,therefore the energy transfer efficiency of ATPE can be increased.Furthermore,benefitting from the novel gas distribution system,the engine shows an ability in self-adjusting under different loads.The arrangements of air ports automatically adjust the open interval of air ports according to the load,which may simplify the speed control system.
文摘In this study an energy and exergy analysis is made of moist air, it is used the psychometrics charts. A Visual Basic program is used to generate psychometrics charts. These charts are used to analyze the air thermodynamic behavior, considering the environmental variations, pressure, temperature and relative humidity. Also, the available energy in the cooling processes at constant enthalpy, humidification at constant temperature and heating with constant relative humidity is analyzed. For example, we obtained that the enthalpy and exergy in a thermodynamic state, with conditions, Patm = 1.013 bar, Tatm = 25oC and Φatm=50%, are h = 50.56 kJ/kga and ε =11.5 kJ/kga;and for Patm= 0.77 bar to the same conditions of Tatm and Φatm, the enthalpy and exergy increases in a 14% and 20%, respectively.
文摘The Dabancheng Windpower Farm in Northwest China’s Xinjiang Uygur Autonomous Region, the largest of its kind in China, plans to increase its present generating capacity of 10 MW to 100 MW by the year 2000. Situated in the vast desert to the southeast of Urumqi, capital city of Xinjiang, the farm has bountiful wind energy resources, with wind speeds as high as 38 metres per second. First built with the help of Danish Government loans in 1992, the farm now provides electricity for local people, especially those in remote areas which are not connected to a power grid. The farm is now seeking both domestic and overseas cooperation for technological improvements and expansion, according
文摘As the conceptual design of air-conditioning is done using the theory of Quality Function Deployment (QFD),cus- tomer requirements should be understood and the product competitive power be analyzed as exactly as possible for new product de- signing.Lots of information in the process of this research is fuzzy and uncertain,but traditional QFD can not deal with it well. Fuzzy theory can solve the problem.So a fuzzy model for analyzing product competitive power is formulated in this paper to im- prove traditional QFD,after that it is applied to analyze air-conditioning competitive power.When air-conditioning competitive power is analyzed using this model,firstly the importance weight of the customer requirements o fair-conditioning is determined us- ing the Analytic Hierarchy Process (AHP) weighting process,then air-conditloning competitive power is evaluated using fuzzy comprehensive evaluation.It is proved that the model is feasible and has good applicability.
文摘Given the distribution feature of resources such as coal and water, the requirements for the development of Chinese power industry, and the fact of monopoly by foreign companies, it is very necessary and significant to independently research and develop air-cooling technologies. Through experimental research, simulative calculation, process and equipment development, field tests and a demonstration project, the design and operation technologies for air-cooling system are grasped and relevant key equipment is developed. The results of the demonstration project show that the technical indicators for the air-cooling system have met or exceeded the design requirements. Part of the research results have been incorporated into the relevant national design standards. The technologies developed have been applied to more than 23 sets of thermal power units of or above 600 MW in China.
文摘The 300 MW steam turbine installed in Waigaoqiao Power Plant with combined HPIP cylinders of double casing structure is a product of the Shanghai Turbine Works utilizing licensed technology. It has a large heat storage capacity and good thermal insulation, so the metal temperature of first stage of HP cylinder (FSMTI) may reach 400-450℃ after shut down and it takes 7-8 days to cool to 150℃ by natural cooling, Now with a forced cooling system the cooling time may be reduced to 40 hours, so that the turbine may be opened for repair work in about 5-6 days. The cooling system for #2 unit and test procedure are briefly described below.
文摘The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV experiments are carried out and recirculation ratio of each condition is calculated. Results show that the thermal flow field of the cooling tower has great influence on the recirculation under the cooling tower. Ameliorating the thermal flow field of the cooling tower can reduce the recirculation under the cooling tower and improve the efficiency of air-cooled condenser also.