This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)f...This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)framework.Further with previous study,the uncertainty in capacity is considered as a non-negligible issue regarding multiple reasons,like the impact of weather,the strike of air traffic controllers(ATCOs),the military use of airspace and the spatiotemporal distribution of nonscheduled flights,etc.These recessive factors affect the outcome of traffic flow optimization.In this research,the focus is placed on the impact of sector capacity uncertainty on demand and capacity balancing(DCB)optimization and ATFM,and multiple options,such as delay assignment and rerouting,are intended for regulating the traffic flow.A scenario optimization method for sector capacity in the presence of uncertainties is used to find the approximately optimal solution.The results show that the proposed approach can achieve better demand and capacity balancing and determine perfect integer solutions to ATFM problems,solving large-scale instances(24 h on seven capacity scenarios,with 6255 flights and 8949 trajectories)in 5-15 min.To the best of our knowledge,our experiment is the first to tackle large-scale instances of stochastic ATFM problems within the collaborative ATFM framework.展开更多
The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming incr...The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming increasingly automated and autonomous,making it lucrative for AI applications.This paper presents a systematic review of studies that employ AI techniques for improving ATM capability.A brief account of the history,structure,and advantages of these methods is provided,followed by the description of their applications to several representative ATM tasks,such as air traffic services(ATS),airspace management(AM),air traffic flow management(ATFM),and flight operations(FO).The major contribution of the current review is the professional survey of the AI application to ATM alongside with the description of their specific advantages:(i)these methods provide alternative approaches to conventional physical modeling techniques,(ii)these methods do not require knowing relevant internal system parameters,(iii)these methods are computationally more efficient,and(iv)these methods offer compact solutions to multivariable problems.In addition,this review offers a fresh outlook on future research.One is providing a clear rationale for the model type and structure selection for a given ATM mission.Another is to understand what makes a specific architecture or algorithm effective for a given ATM mission.These are among the most important issues that will continue to attract the attention of the AI research community and ATM work teams in the future.展开更多
The fundamental case is considered in which flights from many destinations must be scheduled for arrival at a single congested airport having limited capacities.An air traffic control(ATC)model is developed in this ca...The fundamental case is considered in which flights from many destinations must be scheduled for arrival at a single congested airport having limited capacities.An air traffic control(ATC)model is developed in this case.A new and efficient algorithm for the optimal solution of ground holding strategy problem(GHSP)is put forward and verified by a numerical example.展开更多
In order to improve the accuracy and stability of terminal traffic flow prediction in convective weather,a multi-input deep learning(MICL)model is proposed.On the basis of previous studies,this paper expands the set o...In order to improve the accuracy and stability of terminal traffic flow prediction in convective weather,a multi-input deep learning(MICL)model is proposed.On the basis of previous studies,this paper expands the set of weather characteristics affecting the traffic flow in the terminal area,including weather forecast data and Meteorological Report of Aerodrome Conditions(METAR)data.The terminal airspace is divided into smaller areas based on function and the weather severity index(WSI)characteristics extracted from weather forecast data are established to better quantify the impact of weather.MICL model preserves the advantages of the convolution neural network(CNN)and the long short-term memory(LSTM)model,and adopts two channels to input WSI and METAR information,respectively,which can fully reflect the temporal and spatial distribution characteristics of weather in the terminal area.Multi-scene experiments are designed based on the real historical data of Guangzhou Terminal Area operating in typical convective weather.The results show that the MICL model has excellent performance in mean squared error(MSE),root MSE(RMSE),mean absolute error(MAE)and other performance indicators compared with the existing machine learning models or deep learning models,such as Knearest neighbor(KNN),support vector regression(SVR),CNN and LSTM.In the forecast period ranging from 30 min to 6 h,the MICL model has the best prediction accuracy and stability.展开更多
随着空域资源需求的不断增大,军民航间飞行矛盾日益突显。为解决此问题,本文以国务院、中央军事委员会空中交通管制委员会提出的“军民航空管联合运行”为背景,引入军民航共享空域的概念,重点研究了在此类空域中军民航飞行活动协同排序(...随着空域资源需求的不断增大,军民航间飞行矛盾日益突显。为解决此问题,本文以国务院、中央军事委员会空中交通管制委员会提出的“军民航空管联合运行”为背景,引入军民航共享空域的概念,重点研究了在此类空域中军民航飞行活动协同排序(CMFCS,civil-military aviation flight activity collaborative sequencing)问题。首先,基于军民航各自飞行任务特点与差异,对军民航飞行任务的种类进行划分,并使用层次分析法确定各类飞行任务的优先权原则;其次,以军民航飞行活动总延误时间成本最小为目标,建立CMFCS模型;最后,使用遗传算法对模型进行求解,确定军民航飞行活动批准进入共享空域的时间序列。研究结果表明,与经典的先到先服务(FCFS,first come first service)策略相比,协同排序策略得到的总延误时间成本降低了72.17%,优化效果显著且更符合实际,能够实现军民航共同使用国家空域资源,保障飞行活动安全、有序、高效地运行。展开更多
为实现准确的机场流量短期预测,本文建立了基于二次分解方法的分解集成预测模型。首先,应用局部加权回归周期趋势分解(STL,seasonal and trend decomposition procedure based on Loess)算法将原始时间序列分解为趋势项、季节项和余项3...为实现准确的机场流量短期预测,本文建立了基于二次分解方法的分解集成预测模型。首先,应用局部加权回归周期趋势分解(STL,seasonal and trend decomposition procedure based on Loess)算法将原始时间序列分解为趋势项、季节项和余项3个分量,并计算其样本熵。其次,应用遗传算法(GA,genetic algorithm)优化变分模态分解(VMD,variational mode decomposition)参数,对熵值较大的分量进行二次分解。再次,使用极端梯度提升(XGBoost,extreme gradient boosting)对二次分解后的所有分量进行预测,采用加和集成得到最终的预测值。最后,采集国内典型机场实际运行数据进行实例分析。针对北京首都国际机场60 min进场、离场流量时序,本文模型预测的均等系数(EC,equal coefficient)值分别为0.9703、0.9959,相比其他常用模型均有所提高。此外,对于上海浦东、上海虹桥、广州白云3个大型国际机场,本文模型在60 min、30 min统计尺度下进场和离场流量预测的EC值均在0.9700以上,15 min统计尺度下预测的EC值均在0.9500以上。结果表明,本文建立的二次分解集成预测模型具有良好的准确性和普适性,用于机场流量短期预测是可行和有效的。展开更多
文摘This paper introduces an innovative approach to the synchronized demand-capacity balance with special focus on sector capacity uncertainty within a centrally controlled collaborative air traffic flow management(ATFM)framework.Further with previous study,the uncertainty in capacity is considered as a non-negligible issue regarding multiple reasons,like the impact of weather,the strike of air traffic controllers(ATCOs),the military use of airspace and the spatiotemporal distribution of nonscheduled flights,etc.These recessive factors affect the outcome of traffic flow optimization.In this research,the focus is placed on the impact of sector capacity uncertainty on demand and capacity balancing(DCB)optimization and ATFM,and multiple options,such as delay assignment and rerouting,are intended for regulating the traffic flow.A scenario optimization method for sector capacity in the presence of uncertainties is used to find the approximately optimal solution.The results show that the proposed approach can achieve better demand and capacity balancing and determine perfect integer solutions to ATFM problems,solving large-scale instances(24 h on seven capacity scenarios,with 6255 flights and 8949 trajectories)in 5-15 min.To the best of our knowledge,our experiment is the first to tackle large-scale instances of stochastic ATFM problems within the collaborative ATFM framework.
基金supported by the National Natural Science Foundation of China(62073330)the Natural Science Foundation of Hunan Province(2020JJ4339)the Scientific Research Fund of Hunan Province Education Department(20B272).
文摘The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming increasingly automated and autonomous,making it lucrative for AI applications.This paper presents a systematic review of studies that employ AI techniques for improving ATM capability.A brief account of the history,structure,and advantages of these methods is provided,followed by the description of their applications to several representative ATM tasks,such as air traffic services(ATS),airspace management(AM),air traffic flow management(ATFM),and flight operations(FO).The major contribution of the current review is the professional survey of the AI application to ATM alongside with the description of their specific advantages:(i)these methods provide alternative approaches to conventional physical modeling techniques,(ii)these methods do not require knowing relevant internal system parameters,(iii)these methods are computationally more efficient,and(iv)these methods offer compact solutions to multivariable problems.In addition,this review offers a fresh outlook on future research.One is providing a clear rationale for the model type and structure selection for a given ATM mission.Another is to understand what makes a specific architecture or algorithm effective for a given ATM mission.These are among the most important issues that will continue to attract the attention of the AI research community and ATM work teams in the future.
文摘The fundamental case is considered in which flights from many destinations must be scheduled for arrival at a single congested airport having limited capacities.An air traffic control(ATC)model is developed in this case.A new and efficient algorithm for the optimal solution of ground holding strategy problem(GHSP)is put forward and verified by a numerical example.
基金supported by the Civil Aviation Safety Capacity Building Project.
文摘In order to improve the accuracy and stability of terminal traffic flow prediction in convective weather,a multi-input deep learning(MICL)model is proposed.On the basis of previous studies,this paper expands the set of weather characteristics affecting the traffic flow in the terminal area,including weather forecast data and Meteorological Report of Aerodrome Conditions(METAR)data.The terminal airspace is divided into smaller areas based on function and the weather severity index(WSI)characteristics extracted from weather forecast data are established to better quantify the impact of weather.MICL model preserves the advantages of the convolution neural network(CNN)and the long short-term memory(LSTM)model,and adopts two channels to input WSI and METAR information,respectively,which can fully reflect the temporal and spatial distribution characteristics of weather in the terminal area.Multi-scene experiments are designed based on the real historical data of Guangzhou Terminal Area operating in typical convective weather.The results show that the MICL model has excellent performance in mean squared error(MSE),root MSE(RMSE),mean absolute error(MAE)and other performance indicators compared with the existing machine learning models or deep learning models,such as Knearest neighbor(KNN),support vector regression(SVR),CNN and LSTM.In the forecast period ranging from 30 min to 6 h,the MICL model has the best prediction accuracy and stability.
文摘随着空域资源需求的不断增大,军民航间飞行矛盾日益突显。为解决此问题,本文以国务院、中央军事委员会空中交通管制委员会提出的“军民航空管联合运行”为背景,引入军民航共享空域的概念,重点研究了在此类空域中军民航飞行活动协同排序(CMFCS,civil-military aviation flight activity collaborative sequencing)问题。首先,基于军民航各自飞行任务特点与差异,对军民航飞行任务的种类进行划分,并使用层次分析法确定各类飞行任务的优先权原则;其次,以军民航飞行活动总延误时间成本最小为目标,建立CMFCS模型;最后,使用遗传算法对模型进行求解,确定军民航飞行活动批准进入共享空域的时间序列。研究结果表明,与经典的先到先服务(FCFS,first come first service)策略相比,协同排序策略得到的总延误时间成本降低了72.17%,优化效果显著且更符合实际,能够实现军民航共同使用国家空域资源,保障飞行活动安全、有序、高效地运行。
文摘为研究多机场终端区交通流微观时空特性与演变规律,考虑终端区内单股、汇聚和交叉交通流具有基于目标点运行的基本特征,依据先到先服务原则,利用刺激-反射跟驰理论,建立了空中交通流局域排序模型、跟驰模型和机动模型.在此基础上,采用多智能体仿真工具Net Logo,构建了多机场终端区交通流仿真平台,仿真分析了进场交通流特征参数之间的关系和灵敏性,以及进离场交通流之间的相互影响.研究结果表明:多机场终端区进场交通流存在明显的相变与迟滞特征,形成自由相、畅行相、伪拥塞相和同步拥塞相等基本相态;流量与速度密度乘积之间存在线性关系;管制间隔对交通流的影响较大且存在最优管制间隔,进场交叉点的最优管制间隔为8 km.