Nitric oxide(NO)is one of the most crucial products in the plasma-based nitrogen fixation process.In this work,in situ measurements were performed for quantifying the NO synthesis spatially in a warm air glow discharg...Nitric oxide(NO)is one of the most crucial products in the plasma-based nitrogen fixation process.In this work,in situ measurements were performed for quantifying the NO synthesis spatially in a warm air glow discharge,through the method of Mid-infrared quantum cascade laser absorption spectroscopy(QCL-AS).Two ro-vibrational transitions at 1900.076 cm^(-1) and 1900.517 cm^(-1) of the ground-state NO(X)were probed sensitively by the help of the wavelength modulation spectroscopy(WMS)approach to increase the signal/noise(S/N)level.The results show a decline trend of NO synthesis rate along the discharge channel from the cathode to the anode.However,from the point of energy efficiency,the cathode region is of significantly low energy efficiency of NO production.Severe disproportionality was found for the high energy consumption but low NO production in the region of cathode area,compared to that in the positive column zone.Further analysis demonstrates the high energy cost of NO production in the cathode region,is ascribed to the extremely high reduced electric field E/N therein not selectively preferable for the processes of vibrational excitation or dissociation of N_(2) and O_(2) molecules.This drags down the overall energy efficiency of NO synthesis by this typical warm air glow discharge,particularly for the ones with short electrode gaps.Limitations of further improving the energy cost of NO synthesis by variations of the discharge operation conditions,such as discharge current or airflow rate,imply other effective manners able to tune the energy delivery selectively to the NO formation process,are sorely needed.展开更多
Arctic amplification in the context of global warming has received considerable attention,and mechanisms such as ice-albedo feedback and extratropical cyclone activity have been proposed to explain such abnormal warmi...Arctic amplification in the context of global warming has received considerable attention,and mechanisms such as ice-albedo feedback and extratropical cyclone activity have been proposed to explain such abnormal warming.Since 2000,several short-term episodes of significant temperature rise have been observed in the Arctic;however,long-duration warming events in the central Arctic are less common and lack comprehensive research.Previous studies identified that amplified Rossbywaves could connect Arctic warming with extreme weather events in mid-latitude regions,and thus the recent increase in the frequency of mid-latitude extreme weather is also a subject of intensive research.With consideration of temperature anomalies,this study defined a continuous warming process as a warming event and selected strong warming events based on duration.Analysis of National Centers for Environmental Prediction Reanalysis-2 surface air temperature data found that nine strong warming events occurred during 2000-2019,which could be categorized into three types based on the area of warming.This study also investigated the relation between strong warming events and sea ice concentration reduction,sudden stratospheric warming,and extratropical cyclone activities.After full consideration and comparison,we believe that strong warming events in the central Arctic are induced primarily by continuous transport of warm air from mid-latitude ocean areas.展开更多
To overcome the disadvantages of displacement ventilation( DV) and traditional mixing ventilation( MV) system,a new ventilation system known as impinging jet ventilation system( IJVS)has been developing. The warm air ...To overcome the disadvantages of displacement ventilation( DV) and traditional mixing ventilation( MV) system,a new ventilation system known as impinging jet ventilation system( IJVS)has been developing. The warm air can be supplied with impinging jet ventilation( IJV), while the DV is only used for cooling.However,the flow and temperature field of IJV under heating scenario has had few references. The paper is mainly focused on computational fluid dynamics( CFD) and developing an adequate correlation between the distance L that warm air can reach and different parameters in the warm IJVS by using response surface methodology( RSM). The results indicate that L decreases as the supply velocity υ decreases but increases as the supply temperature difference ΔT or the discharge height h decreases. In the variable air volume( VAV) system, it is necessary to determine supply parameters both under the maximum-heat-load condition and the small-heat-load condition. Unlike the VAV system,the constant air volume( CAV) system has no need to study the small-heat-load condition. Draught discomfort near the nozzle becomes the issue of concern in IJVS, thus the suitable discharge height is of great importance in design and can be calculated based on the predictive model.展开更多
The Ross-Amundsen sector is experiencing an accelerating warming trend and a more intensive advective influx of marine air streams.As a result,massive surface melting events of the ice shelf are occurring more frequen...The Ross-Amundsen sector is experiencing an accelerating warming trend and a more intensive advective influx of marine air streams.As a result,massive surface melting events of the ice shelf are occurring more frequently,which puts the West Antarctica Ice Sheet at greater risk of degradation.This study shows the connection between surface melting and the prominent intrusion of warm and humid air flows from lower latitudes.By applying the Climate Feedback-Response Analysis Method(CFRAM),the temporal surge of the downward longwave(LW)fluxes over the surface of the Ross Ice Shelf(RIS)and adjacent regions are identified for four historically massive RIS surface melting events.The melting events are decomposed to identify which physical mechanisms are the main contributors.We found that intrusions of warm and humid airflow from lower latitudes are conducive to warm air temperature and water vapor anomalies,as well as cloud development.These changes exert a combined impact on the abnormal enhancement of the downward LW surface radiative fluxes,significantly contributing to surface warming and the resultant massive melting of ice.展开更多
By analyzing and studying a lot of weather charts and the weather condition of several typical cases,some kinds of unconventional high-altitude and ground weather situations whether the ground cold,warm front had the ...By analyzing and studying a lot of weather charts and the weather condition of several typical cases,some kinds of unconventional high-altitude and ground weather situations whether the ground cold,warm front had the precipitation in Jilin area were summarized.The results showed that the temperature field was the main element field which affected the weather variation.The analysis and research on the movement condition of cold,warm air in the different temperature-pressure field configuration in the high-altitude was the key of frontal precipitation weather forecast.展开更多
In this study, surface air temperature from 75 meteorological stations above 3000 m on the Tibetan Plateau are applied for evaluation of the European Centre for Medium-Range Weather Forecasts(ECMWF) third-generation r...In this study, surface air temperature from 75 meteorological stations above 3000 m on the Tibetan Plateau are applied for evaluation of the European Centre for Medium-Range Weather Forecasts(ECMWF) third-generation reanalysis product ERA-Interim in the period of 1979-2010. High correlations ranging from 0.973 to 0.999 indicate that ERA-Interim could capture the annual cycle very well. However, an average root-meansquare error(rmse) of 3.7°C for all stations reveals that ERA-Interim could not be applied directly for the individual sites. The biases can be mainly attributed to the altitude differences between ERA-Interim grid points and stations. An elevation correction method based on monthly lapse rates is limited to reduce the bias for all stations. Generally, ERA-Interim captured the Plateau-Wide annual and seasonal climatologies very well. The spatial variance is highly related to the topographic features of the TP. The temperature increases significantly(10°C- 15°C) from the western to the eastern Tibetan Plateau for all seasons, in particular during winter and summer. A significant warming trend(0.49°C/decade) is found over the entire Tibetan Plateau using station time series from 1979-2010. ERA-Interim captures the annual warming trend with an increase rate of 0.33°C /decade very well. The observation data and ERA-Interim data both showed the largest warming trends in winter with values of 0.67°C/decade and 0.41°C/decade, respectively. We conclude that in general ERA-Interim captures the temperature trends very well and ERA-Interim is reliable for climate change investigation over the Tibetan Plateau under the premise of cautious interpretation.展开更多
An extensive search has been carried out to find all major flood and very heavy rainfall events in Victoria since 1876 when Southern Oscillation(SOI)data became available.The synoptic weather patterns were analysed an...An extensive search has been carried out to find all major flood and very heavy rainfall events in Victoria since 1876 when Southern Oscillation(SOI)data became available.The synoptic weather patterns were analysed and of the 319 events studied,121 events were found to be East Coast Lows(ECLs)and 82 were other types of low-pressure systems.Tropical influences also played a large role with 105 events being associated with tropical air advecting down to Victoria into weather systems.Examples are presented of all the major synoptic patterns identified.The SOI was found to be an important climate driver with positive SOIs being associated with many events over the 144 years studied.The 1976 Climate Shift and its influence on significant Victorian rainfall events is studied and negative SOI monthly values were shown to dominate following the Shift.However,one of the most active periods in 144 years of Victorian heavy rain occurred after the shift with a sustained period of positive SOI events from 2007 to 2014.Therefore,it is critical for forecasting future Victorian heavy rainfall is to understand if sequences of these positive SOI events continue like those preceding the Shift.Possible relationships between the Shift and Global Temperature rises are also explored.Upper wind data available from some of the heaviest rainfall events showed the presence of anticyclonic turning of the winds between 850hPa and 500hPa levels which has been found to be linked with extreme rainfall around the Globe.展开更多
In this paper,main characteristics of the long-lasting freezing rain and snowstorm event in southern China at the beginning of 2008,features of the related atmospheric circulation and the causes thereof are analyzed.D...In this paper,main characteristics of the long-lasting freezing rain and snowstorm event in southern China at the beginning of 2008,features of the related atmospheric circulation and the causes thereof are analyzed.During the event,patterns of the atmospheric circulation stayed stable;the polar vortex located in the northern part of the Eastern Hemisphere was strong with little movement;the cold front from the polar region and the active warm air mass from the tropical ocean confronted each other for a long time;the blocking high to the west of Baikal remained strong and steady;the trough over central and western Asia maintained its position for quite long with a group of little troughs splitting from it frequently;the dominant wind at 700 hPa was southwesterly while shears and vortexes at 850 hPa developed continually,providing the necessary low-level convergence for subsequent precipitation.Meanwhile,in the mid troposphere,eddies were generated over the Tibetan Plateau and positive vorticity disturbances in the Sichuan Basin propagated eastward to the coastal regions of eastern China.The western Pacific subtropical high was intensive with westward and northward migrations.The subtropical frontal zone was puissant and the north-south temperature gradient was large.Quasi-stationary fronts over South China and the Yunnan-Guizhou Plateau remained stable.Warm air masses over the tropical ocean were active,so was the trough in the southern branch of the westerlies over the Bay of Bengal.There were four episodes associated with this event.The first one was featured with the interaction of strong cold and warm air,while the other three with the quasi-stationary fronts over South China and the Yunnan-Guizhou Plateau as well as vigorous penetration of cold air from the north.The existence of the inversion layer and the thick melting layer were one of the main reasons for the long-lasting freezing rains.The main reason for the snowstorms was that the positive vorticity over the Sichuan Basin propagated eastward to the coastal regions of eastern China.Abundant water vapor and intense updraft also favored the heavy snows.展开更多
Hurricane Michael was intensifying as it made landfall devastating areas of the Florida Panhandle including the small town of Mexico Beach.The structure of the hurricane is examined using radar wind data made availabl...Hurricane Michael was intensifying as it made landfall devastating areas of the Florida Panhandle including the small town of Mexico Beach.The structure of the hurricane is examined using radar wind data made available from aircraft reconnaissance missions.This showed a dominant warm air advection configuration(winds turning in direction in an anticyclonic fashion with height)around the core of the hurricane.Conventional radiosonde data was also used to study the warm air advection environment east of a deep layered tough system which Michael moved into and which appeared to favour such strong intensification.The structure of this deep trough is also examined and compared with a situation where Hurricane Dennis in 2005 weakened as it approached the coast in much the same region.It appears that the thermal structure of the upper trough at low to middle levels is critical to whether the hurricane intensifies or weakens with the presence of strong cold air advection associated with weakening.展开更多
基金partly supported by National Natural Science Foundation of China(Nos.11975061,52111530088)the Technology Innovation and Application Development Project of Chongqing(No.cstc2019jscx-msxm X0041)+1 种基金the Construction Committee Project of Chongqing(No.2018-1-3-6)the Fundamental Research Funds for the Central Universities(No.2019CDQYDQ034)。
文摘Nitric oxide(NO)is one of the most crucial products in the plasma-based nitrogen fixation process.In this work,in situ measurements were performed for quantifying the NO synthesis spatially in a warm air glow discharge,through the method of Mid-infrared quantum cascade laser absorption spectroscopy(QCL-AS).Two ro-vibrational transitions at 1900.076 cm^(-1) and 1900.517 cm^(-1) of the ground-state NO(X)were probed sensitively by the help of the wavelength modulation spectroscopy(WMS)approach to increase the signal/noise(S/N)level.The results show a decline trend of NO synthesis rate along the discharge channel from the cathode to the anode.However,from the point of energy efficiency,the cathode region is of significantly low energy efficiency of NO production.Severe disproportionality was found for the high energy consumption but low NO production in the region of cathode area,compared to that in the positive column zone.Further analysis demonstrates the high energy cost of NO production in the cathode region,is ascribed to the extremely high reduced electric field E/N therein not selectively preferable for the processes of vibrational excitation or dissociation of N_(2) and O_(2) molecules.This drags down the overall energy efficiency of NO synthesis by this typical warm air glow discharge,particularly for the ones with short electrode gaps.Limitations of further improving the energy cost of NO synthesis by variations of the discharge operation conditions,such as discharge current or airflow rate,imply other effective manners able to tune the energy delivery selectively to the NO formation process,are sorely needed.
基金the Chinese Natural Science Foundation(Grant nos.,41941012 and 41976022)the Major Scientific and Technological Innovation Projects of Shandong Province(Grant no.,2018SDKJ0104-1)。
文摘Arctic amplification in the context of global warming has received considerable attention,and mechanisms such as ice-albedo feedback and extratropical cyclone activity have been proposed to explain such abnormal warming.Since 2000,several short-term episodes of significant temperature rise have been observed in the Arctic;however,long-duration warming events in the central Arctic are less common and lack comprehensive research.Previous studies identified that amplified Rossbywaves could connect Arctic warming with extreme weather events in mid-latitude regions,and thus the recent increase in the frequency of mid-latitude extreme weather is also a subject of intensive research.With consideration of temperature anomalies,this study defined a continuous warming process as a warming event and selected strong warming events based on duration.Analysis of National Centers for Environmental Prediction Reanalysis-2 surface air temperature data found that nine strong warming events occurred during 2000-2019,which could be categorized into three types based on the area of warming.This study also investigated the relation between strong warming events and sea ice concentration reduction,sudden stratospheric warming,and extratropical cyclone activities.After full consideration and comparison,we believe that strong warming events in the central Arctic are induced primarily by continuous transport of warm air from mid-latitude ocean areas.
基金National Natural Science Foundation of China(No.51278094)the Innovation Foundation of Shanghai Education Commission,China(No.13ZZ054)
文摘To overcome the disadvantages of displacement ventilation( DV) and traditional mixing ventilation( MV) system,a new ventilation system known as impinging jet ventilation system( IJVS)has been developing. The warm air can be supplied with impinging jet ventilation( IJV), while the DV is only used for cooling.However,the flow and temperature field of IJV under heating scenario has had few references. The paper is mainly focused on computational fluid dynamics( CFD) and developing an adequate correlation between the distance L that warm air can reach and different parameters in the warm IJVS by using response surface methodology( RSM). The results indicate that L decreases as the supply velocity υ decreases but increases as the supply temperature difference ΔT or the discharge height h decreases. In the variable air volume( VAV) system, it is necessary to determine supply parameters both under the maximum-heat-load condition and the small-heat-load condition. Unlike the VAV system,the constant air volume( CAV) system has no need to study the small-heat-load condition. Draught discomfort near the nozzle becomes the issue of concern in IJVS, thus the suitable discharge height is of great importance in design and can be calculated based on the predictive model.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42075028 and 42222502)the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant SML2021SP302)
文摘The Ross-Amundsen sector is experiencing an accelerating warming trend and a more intensive advective influx of marine air streams.As a result,massive surface melting events of the ice shelf are occurring more frequently,which puts the West Antarctica Ice Sheet at greater risk of degradation.This study shows the connection between surface melting and the prominent intrusion of warm and humid air flows from lower latitudes.By applying the Climate Feedback-Response Analysis Method(CFRAM),the temporal surge of the downward longwave(LW)fluxes over the surface of the Ross Ice Shelf(RIS)and adjacent regions are identified for four historically massive RIS surface melting events.The melting events are decomposed to identify which physical mechanisms are the main contributors.We found that intrusions of warm and humid airflow from lower latitudes are conducive to warm air temperature and water vapor anomalies,as well as cloud development.These changes exert a combined impact on the abnormal enhancement of the downward LW surface radiative fluxes,significantly contributing to surface warming and the resultant massive melting of ice.
基金Supported by The Special Project of Public Welfare Industry Science and Research(GYHY200806014)The Project of Nanjing University of Information Science&Technology(E30JG0730)
文摘By analyzing and studying a lot of weather charts and the weather condition of several typical cases,some kinds of unconventional high-altitude and ground weather situations whether the ground cold,warm front had the precipitation in Jilin area were summarized.The results showed that the temperature field was the main element field which affected the weather variation.The analysis and research on the movement condition of cold,warm air in the different temperature-pressure field configuration in the high-altitude was the key of frontal precipitation weather forecast.
基金funded by Fujian Bureau of Surveying,Mapping and Geoinformation(Grant No.2013S17)Natural Science Foundation of China(Grant No.71373130)+2 种基金Non-Profit Research Projects of Fujian Province,China(Grant No2013R04)Key Project of the Department of Science and Technology of Fujian Province,China(Grant No.2012Y4001)supported by the ECMWF’s public web server(http://apps.ecmwf.int/datasets/)
文摘In this study, surface air temperature from 75 meteorological stations above 3000 m on the Tibetan Plateau are applied for evaluation of the European Centre for Medium-Range Weather Forecasts(ECMWF) third-generation reanalysis product ERA-Interim in the period of 1979-2010. High correlations ranging from 0.973 to 0.999 indicate that ERA-Interim could capture the annual cycle very well. However, an average root-meansquare error(rmse) of 3.7°C for all stations reveals that ERA-Interim could not be applied directly for the individual sites. The biases can be mainly attributed to the altitude differences between ERA-Interim grid points and stations. An elevation correction method based on monthly lapse rates is limited to reduce the bias for all stations. Generally, ERA-Interim captured the Plateau-Wide annual and seasonal climatologies very well. The spatial variance is highly related to the topographic features of the TP. The temperature increases significantly(10°C- 15°C) from the western to the eastern Tibetan Plateau for all seasons, in particular during winter and summer. A significant warming trend(0.49°C/decade) is found over the entire Tibetan Plateau using station time series from 1979-2010. ERA-Interim captures the annual warming trend with an increase rate of 0.33°C /decade very well. The observation data and ERA-Interim data both showed the largest warming trends in winter with values of 0.67°C/decade and 0.41°C/decade, respectively. We conclude that in general ERA-Interim captures the temperature trends very well and ERA-Interim is reliable for climate change investigation over the Tibetan Plateau under the premise of cautious interpretation.
文摘An extensive search has been carried out to find all major flood and very heavy rainfall events in Victoria since 1876 when Southern Oscillation(SOI)data became available.The synoptic weather patterns were analysed and of the 319 events studied,121 events were found to be East Coast Lows(ECLs)and 82 were other types of low-pressure systems.Tropical influences also played a large role with 105 events being associated with tropical air advecting down to Victoria into weather systems.Examples are presented of all the major synoptic patterns identified.The SOI was found to be an important climate driver with positive SOIs being associated with many events over the 144 years studied.The 1976 Climate Shift and its influence on significant Victorian rainfall events is studied and negative SOI monthly values were shown to dominate following the Shift.However,one of the most active periods in 144 years of Victorian heavy rain occurred after the shift with a sustained period of positive SOI events from 2007 to 2014.Therefore,it is critical for forecasting future Victorian heavy rainfall is to understand if sequences of these positive SOI events continue like those preceding the Shift.Possible relationships between the Shift and Global Temperature rises are also explored.Upper wind data available from some of the heaviest rainfall events showed the presence of anticyclonic turning of the winds between 850hPa and 500hPa levels which has been found to be linked with extreme rainfall around the Globe.
基金Supported by the National Natural Science Foundation of China under Grant No.40605019
文摘In this paper,main characteristics of the long-lasting freezing rain and snowstorm event in southern China at the beginning of 2008,features of the related atmospheric circulation and the causes thereof are analyzed.During the event,patterns of the atmospheric circulation stayed stable;the polar vortex located in the northern part of the Eastern Hemisphere was strong with little movement;the cold front from the polar region and the active warm air mass from the tropical ocean confronted each other for a long time;the blocking high to the west of Baikal remained strong and steady;the trough over central and western Asia maintained its position for quite long with a group of little troughs splitting from it frequently;the dominant wind at 700 hPa was southwesterly while shears and vortexes at 850 hPa developed continually,providing the necessary low-level convergence for subsequent precipitation.Meanwhile,in the mid troposphere,eddies were generated over the Tibetan Plateau and positive vorticity disturbances in the Sichuan Basin propagated eastward to the coastal regions of eastern China.The western Pacific subtropical high was intensive with westward and northward migrations.The subtropical frontal zone was puissant and the north-south temperature gradient was large.Quasi-stationary fronts over South China and the Yunnan-Guizhou Plateau remained stable.Warm air masses over the tropical ocean were active,so was the trough in the southern branch of the westerlies over the Bay of Bengal.There were four episodes associated with this event.The first one was featured with the interaction of strong cold and warm air,while the other three with the quasi-stationary fronts over South China and the Yunnan-Guizhou Plateau as well as vigorous penetration of cold air from the north.The existence of the inversion layer and the thick melting layer were one of the main reasons for the long-lasting freezing rains.The main reason for the snowstorms was that the positive vorticity over the Sichuan Basin propagated eastward to the coastal regions of eastern China.Abundant water vapor and intense updraft also favored the heavy snows.
文摘Hurricane Michael was intensifying as it made landfall devastating areas of the Florida Panhandle including the small town of Mexico Beach.The structure of the hurricane is examined using radar wind data made available from aircraft reconnaissance missions.This showed a dominant warm air advection configuration(winds turning in direction in an anticyclonic fashion with height)around the core of the hurricane.Conventional radiosonde data was also used to study the warm air advection environment east of a deep layered tough system which Michael moved into and which appeared to favour such strong intensification.The structure of this deep trough is also examined and compared with a situation where Hurricane Dennis in 2005 weakened as it approached the coast in much the same region.It appears that the thermal structure of the upper trough at low to middle levels is critical to whether the hurricane intensifies or weakens with the presence of strong cold air advection associated with weakening.