The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem.It is generally considered that the waveform consists of overpressure peak,positive pressure zone and negative pr...The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem.It is generally considered that the waveform consists of overpressure peak,positive pressure zone and negative pressure zone.Most of current practice usually considers only the positive pressure.Many empirical relations are available to predict overpressure peak,the positive pressure action time and pressure decay law.However,there are few models that can predict the whole waveform.The whole process of explosion shock wave overpressure,which was expressed as the product of the three factor functions of peak,attenuation and oscillation,was proposed in the present work.According to the principle of explosion similarity,the scaled parameters were introduced and the empirical formula was absorbed to form a mathematical model of shock wave overpressure.Parametric numerical simulations of free-field air explosions were conducted.By experimental verification of the AUTODYN numerical method and comparing the analytical and simulated curves,the model is proved to be accurate to calculate the shock wave overpressure under free-field air explosion.In addition,through the model the shock wave overpressure at different time and distance can be displayed in three dimensions.The model makes the time needed for theoretical calculation much less than that for numerical simulation.展开更多
In this study a coupled air-sea-wave model system, containing the model components of GRAPES-TCM, ECOM-si and WAVEWATCH III, is established based on an air-sea coupled model. The changes of wave state and the effects ...In this study a coupled air-sea-wave model system, containing the model components of GRAPES-TCM, ECOM-si and WAVEWATCH III, is established based on an air-sea coupled model. The changes of wave state and the effects of sea spray are both considered. Using the complex air-sea-wave model, a set of idealized simulations was applied to investigate the effects of air-sea-wave interaction in the upper ocean. Results show that air-wave coupling can strengthen tropical cyclones while air-sea coupling can weaken them; and air-sea-wave coupling is comparable to that of air-sea coupling, as the intensity is almost unchanged with the wave model coupled to the air-sea coupled model.The mixing by vertical advection is strengthened if the wave effect is considered, and causes much more obvious sea surface temperature(SST) decreases in the upper ocean in the air-sea coupled model. Air-wave coupling strengthens the air-sea heat exchange, while the thermodynamic coupling between the atmosphere and ocean weakens the air-sea heat exchange: the air-sea-wave coupling is the result of their balance. The wave field distribution characteristic is determined by the wind field. Experiments are also conducted to simulate ocean responses to different mixed layer depths.With increasing depth of the initial mixed layer, the decrease of SST weakens, but the temperature decrease of deeper layers is enhanced and the loss of heat in the upper ocean is increased. The significant wave height is larger when the initial mixed layer depth increases.展开更多
The dynamical features of air-sea coupling waves and their stabilities in a simple coupled air-sea model in the tropics have been studied with respect to interaction occurring among different types of the free waves i...The dynamical features of air-sea coupling waves and their stabilities in a simple coupled air-sea model in the tropics have been studied with respect to interaction occurring among different types of the free waves in the o-cean and in the atmosphere. It is pointed out that there exist a stable and an unstable air-sea interaction modes in the tropical coupled system , respectively. The propagation of the unstable mode relies greatly on the zonal space scale, i. e. only for wave length ranging from 5 000 km to 10 000 km can the disturbance unstably move slowly eastward. The waves that slowly propagate unstably eastward agree well with the observational facts. Finally,it is also proposed that the interaction between Kelvin wave in one medium and Rossby wave in another medium is a necessary condition for the occurrence of destabilization of the coupled air-sea system in the tropics.展开更多
To investigate the shock wave characteristics of RDX-based aluminized explosives,air blast tests were conducted for measuring the parameters of 10 kg aluminized explosives which contained 0-40% aluminum.The results sh...To investigate the shock wave characteristics of RDX-based aluminized explosives,air blast tests were conducted for measuring the parameters of 10 kg aluminized explosives which contained 0-40% aluminum.The results showed that with the increasing of aluminum content,the overpressures and impulses increase at first and then decrease within 7 m or 5 m,which reached the maximum when aluminum content was 20% or 30%.Power exponential formulas are used to fit the shock wave parameters vs scaled distance,where an equal weight of TNT is used to calculate the scaled distance.The overpressures of HL0 and TNT in tested locations not only conform to the similar law,but also conform to the same attenuation law after gaining the scaled distances of equal TNT mass.The pre-exponential factors of overpressure and impulse,kp and kI,decrease along with the increasing of Al content and keep the same pace as the calculated PCJ).The attenuation coefficients a_P and aIincrease at first and decrease later with the increasing of aluminum content,and they reached the maximal values with30% Al containing,which keeps the same pace as the calculated QV.展开更多
Computations for air gap response of a semisubmersible platform based on a 3D numerical wave tank approach are presented.The developed method is in time domain and can consider nonlinearities associated with incident ...Computations for air gap response of a semisubmersible platform based on a 3D numerical wave tank approach are presented.The developed method is in time domain and can consider nonlinearities associated with incident wave and hydrostatic forces exactly in determining the body response, but the interaction hydrodynamics of radiation and diffraction are based on simplified linearization assumptions. The incident wave can be defined by any suitable wave theory and here defined by a fully nonlinear numerical wave model. After verifying the present computations results in its degenerated linearized version against the usual linear 3D Green function–based frequency-domain results for air gap predictions, systematic comparative studies are undertaken between linear and the approximate nonlinear solutions. It is found that nonlinear computations can yield considerably conservative predictions as compared to fully linear calculations, amounting to a difference of up to 30%–40% in the minimum air gap in steep ambient incident waves at high and moderate frequencies.展开更多
Air–sea exchange plays a vital role in the development and maintenance of tropical cyclones(TCs). Although studies have suggested the dependence of air–sea fluxes on surface waves and sea spray, how these processe...Air–sea exchange plays a vital role in the development and maintenance of tropical cyclones(TCs). Although studies have suggested the dependence of air–sea fluxes on surface waves and sea spray, how these processes modify those fluxes under TC conditions have not been sufficiently investigated based on in-situ observations.Using continuous meteorological and surface wave data from a moored buoy in the northern South China Sea,this study examines the effects of surface waves and sea spray on air–sea fluxes during the passage of Typhoon Hagupit. The mooring was within about 40 km of the center of Hagupit. Surface waves could increase momentum flux to the ocean by about 15%, and sea spray enhanced both sensible and latent heat fluxes to the atmosphere,causing Hagupit to absorb 500 W/m^2 more heat flux from the ocean. These results have powerful implications for understanding TC–ocean interaction and improving TC intensity forecasting.展开更多
The influence of air pressure on mechanical effect of laser plasma shock wave in a vacuum chamber produced by a Nd:YAG laser has been studied. The laser pulses with pulse width of 10ns and pulse energy of about 320mJ...The influence of air pressure on mechanical effect of laser plasma shock wave in a vacuum chamber produced by a Nd:YAG laser has been studied. The laser pulses with pulse width of 10ns and pulse energy of about 320mJ at 1.06μm wavelength is focused on the aluminium target mounted on a ballistic pendulum, and the air pressure in the chamber changes from 2.8 × 10^ 3 to 1.01 × 10^5pa. The experimental results show that the impulse coupling coefficient changes as the air pressure and the distance of the target from focus change. The mechanical effects of the plasma shock wave on the target are analysed at different distances from focus and the air pressure.展开更多
Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numeri...Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numerical wave tank based on the two-phase VOF model is established in the present study toinvestigate the operating performance of OWC air chamber. The RANS equations, standard k-ε turbulence model and dynamic mesh technology are employed in the numerical model. The effects of incident wave conditions and shape parameters on the wave energy converting efficiency are studied and the capability of the present numerical wave tank on the corresponding engineering application is validated.展开更多
The wave-CISK (cumulus convection heating feedback), the air-sea interaction and the evaporation-wind feedback are together introduced into a simple theoretical model, in order to understand their effect on driving tr...The wave-CISK (cumulus convection heating feedback), the air-sea interaction and the evaporation-wind feedback are together introduced into a simple theoretical model, in order to understand their effect on driving tropical atmospheric intraseasonal oscillation (ISO). The results showed that among the introduced dynamical processes the wave-CISK plays a major role in reducing phase speed of the wave to be closer to the observed tropical ISO. While the evaporation-wind feedback plays a major role in unstabilizing the wave. The air-sea interaction has certain effect on slowing down the phase speed of the wave. Therefore, the wave-CISK and evaporation-wind feedback can be regarded as fundamental dynamical mechanism of the tropical ISO. This study also shows that since the effects of the evaporation-wind feedback and the air-sea interaction were introduced, the excited wave is zonally dispersive, which can dynamically explain the activity feature of the observed ISO in the tropical atmosphere very well.展开更多
A mesoscale inertia-gravitational wave at 200 hPa is analysed. The reasons of this wave occurring are also discussed. It is indicated that the occurrence of this wave is due to inertia-gravitational instability, and c...A mesoscale inertia-gravitational wave at 200 hPa is analysed. The reasons of this wave occurring are also discussed. It is indicated that the occurrence of this wave is due to inertia-gravitational instability, and closely related to horizontal and vertical shear of wind.展开更多
Shock wave is a detriment in the development of supersonic aircrafts;it increases flow drag as well as surface heating from additional friction;it also initiates sonic boom on the ground which precludes supersonic jet...Shock wave is a detriment in the development of supersonic aircrafts;it increases flow drag as well as surface heating from additional friction;it also initiates sonic boom on the ground which precludes supersonic jetliner to fly overland. A shock wave mitigation technique is demonstrated by experiments conducted in a Mach 2.5 wind tunnel. Non-thermal air plasma generated symmetrically in front of a wind tunnel model and upstream of the shock, by on-board 60 Hz periodic electric arc discharge, works as a plasma deflector, it deflects incoming flow to transform the shock from a well-defined attached shock into a highly curved shock structure. In a sequence with increasing discharge intensity, the transformed curve shock increases shock angle and moves upstream to become detached with increasing standoff distance from the model. It becomes diffusive and disappears near the peak of the discharge. The flow deflection increases the equivalent cone angle of the model, which in essence, reduces the equivalent Mach number of the incoming flow, manifesting the reduction of the shock wave drag on the cone. When this equivalent cone angle exceeds a critical angle, the shock becomes detached and fades away. This shock wave mitigation technique helps drag reduction as well as eliminates sonic boom.展开更多
This paper numerically investigates the radio wave scattering by the artificial acoustic disturbance in the atmospheric boundary layer. The numerical model is based on the finitedifference time-domain(FDTD) method f...This paper numerically investigates the radio wave scattering by the artificial acoustic disturbance in the atmospheric boundary layer. The numerical model is based on the finitedifference time-domain(FDTD) method for radio wave propagation and fluid simulation for atmospheric disturbance by acoustics waves. The characteristics of radio wave scattering propagation in the artificial acoustic perturbations are investigated by this numerical model. The numerical simulation results demonstrate that the radio wave propagation scattered by acoustic scatterer has the characteristic of forward tropospheric scatter. When the radio waves are scattered, they distribute in all directions; a majority of radio waves continues to propagate along the original direction, and only a small part of the energy is scattered. For the same acoustic scatterer, if we merely change the radio wave emission elevation, the horizontal spans of forward scattering radio wave packets centers gradually decrease with the increasing of emission elevations; and the energy of wave packets increases firstly and then decreases with launching elevation, reaching the maximum at a certain angle. If we merely change the wave emitting position, the horizontal spans decrease with the increasing of emission positions, and the energy of wave packets also increases firstly and then decreases with launch position, reaching the maximum at a certain position. This approach can be very promising for atmospheric scatter communications.展开更多
When the spacecraft flies much faster than the sound speed (~1200 km/h), the airflow disturbances deflected forward from the spacecraft cannot get away from the spacecraft and form a shock wave in front of it. Shock w...When the spacecraft flies much faster than the sound speed (~1200 km/h), the airflow disturbances deflected forward from the spacecraft cannot get away from the spacecraft and form a shock wave in front of it. Shock waves have been a detriment for the development of supersonic aircrafts, which have to overcome high wave drag and surface heating from additional friction. Shock wave also produces sonic booms. The noise issue raises environmental concerns, which have precluded routine supersonic flight over land. Therefore, mitigation of shock wave is essential to advance the development of supersonic aircrafts. A plasma mitigation technique is studied. A theory is presented to show that shock wave structure can be modified via flow deflection. Symmetrical deflection evades the need of exchanging the transverse momentum between the flow and the deflector. The analysis shows that the plasma generated in front of the model can effectively deflect the incoming flow. A non-thermal air plasma, generated by on-board 60 Hz periodic electric arc discharge in front of a wind tunnel model, was applied as a plasma deflector for shock wave mitigation technique. The experiment was conducted in a Mach 2.5 wind tunnel. The results show that the air plasma was generated symmetrically in front of the wind tunnel model. With increasing discharge intensity, the plasma deflector transforms the shock from a welldefined attached shock into a highly curved shock structure with increasing standoff distance from the model;this curved shock has increased shock angle and also appears in increasingly diffused form. In the decay of the discharge intensity, the shock front is first transformed back to a well-defined curve shock, which moves downstream to become a perturbed oblique shock;the baseline shock front then reappears as the discharge is reduced to low level again. The experimental observations confirm the theory. The steady of the incoming flow during the discharge cycle is manifested by the repeat of the baseline shock front.展开更多
In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE inc...In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE including the initiation,instabilities,and propulsive performance.A hybrid MPI t OpenMP parallel computing model is applied and it is proved to be able to obtain a more effective parallel performance on high performance computing(HPC)systems.A series of cases with the total pressure of 1 MPa,1.5 MPa,2 MPa,and the equivalence ratio of 0.9,1,1.4 are simulated.On one hand,the total pressure shows a significant impact on the instabilities of rotating detonation waves.The instability phenomenon is observed in cases with low total pressure(1 MPa)and weakened with the increase of the total pressure.The total pressure has a small impact on the detonation wave velocity and the specific impulse.On the other hand,the equivalence ratio shows a negligible influence on the instabilities,while it affects the ignition process and accounts for the detonation velocity deficit.It is more difficult to initiate rotating detonation waves directly in the lean fuel operation condition.Little difference was observed in the thrust with different equivalence ratios of 0.9,1,and 1.4.The highest specific impulse was obtained in the lean fuel cases,which is around 2700 s.The findings could provide insights into the understanding of the operation characteristics of kerosene/air RDE.展开更多
基金partially sponsored by Foundation of PLA Rocket Force
文摘The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem.It is generally considered that the waveform consists of overpressure peak,positive pressure zone and negative pressure zone.Most of current practice usually considers only the positive pressure.Many empirical relations are available to predict overpressure peak,the positive pressure action time and pressure decay law.However,there are few models that can predict the whole waveform.The whole process of explosion shock wave overpressure,which was expressed as the product of the three factor functions of peak,attenuation and oscillation,was proposed in the present work.According to the principle of explosion similarity,the scaled parameters were introduced and the empirical formula was absorbed to form a mathematical model of shock wave overpressure.Parametric numerical simulations of free-field air explosions were conducted.By experimental verification of the AUTODYN numerical method and comparing the analytical and simulated curves,the model is proved to be accurate to calculate the shock wave overpressure under free-field air explosion.In addition,through the model the shock wave overpressure at different time and distance can be displayed in three dimensions.The model makes the time needed for theoretical calculation much less than that for numerical simulation.
基金"973"Project(2013CB430305)Special Scientific Research Fund of Meteorological Public Welfare of China(GYHY201206006,GYHY 201106004)Shanghai Meteorological Service(TD201403)
文摘In this study a coupled air-sea-wave model system, containing the model components of GRAPES-TCM, ECOM-si and WAVEWATCH III, is established based on an air-sea coupled model. The changes of wave state and the effects of sea spray are both considered. Using the complex air-sea-wave model, a set of idealized simulations was applied to investigate the effects of air-sea-wave interaction in the upper ocean. Results show that air-wave coupling can strengthen tropical cyclones while air-sea coupling can weaken them; and air-sea-wave coupling is comparable to that of air-sea coupling, as the intensity is almost unchanged with the wave model coupled to the air-sea coupled model.The mixing by vertical advection is strengthened if the wave effect is considered, and causes much more obvious sea surface temperature(SST) decreases in the upper ocean in the air-sea coupled model. Air-wave coupling strengthens the air-sea heat exchange, while the thermodynamic coupling between the atmosphere and ocean weakens the air-sea heat exchange: the air-sea-wave coupling is the result of their balance. The wave field distribution characteristic is determined by the wind field. Experiments are also conducted to simulate ocean responses to different mixed layer depths.With increasing depth of the initial mixed layer, the decrease of SST weakens, but the temperature decrease of deeper layers is enhanced and the loss of heat in the upper ocean is increased. The significant wave height is larger when the initial mixed layer depth increases.
文摘The dynamical features of air-sea coupling waves and their stabilities in a simple coupled air-sea model in the tropics have been studied with respect to interaction occurring among different types of the free waves in the o-cean and in the atmosphere. It is pointed out that there exist a stable and an unstable air-sea interaction modes in the tropical coupled system , respectively. The propagation of the unstable mode relies greatly on the zonal space scale, i. e. only for wave length ranging from 5 000 km to 10 000 km can the disturbance unstably move slowly eastward. The waves that slowly propagate unstably eastward agree well with the observational facts. Finally,it is also proposed that the interaction between Kelvin wave in one medium and Rossby wave in another medium is a necessary condition for the occurrence of destabilization of the coupled air-sea system in the tropics.
文摘To investigate the shock wave characteristics of RDX-based aluminized explosives,air blast tests were conducted for measuring the parameters of 10 kg aluminized explosives which contained 0-40% aluminum.The results showed that with the increasing of aluminum content,the overpressures and impulses increase at first and then decrease within 7 m or 5 m,which reached the maximum when aluminum content was 20% or 30%.Power exponential formulas are used to fit the shock wave parameters vs scaled distance,where an equal weight of TNT is used to calculate the scaled distance.The overpressures of HL0 and TNT in tested locations not only conform to the similar law,but also conform to the same attenuation law after gaining the scaled distances of equal TNT mass.The pre-exponential factors of overpressure and impulse,kp and kI,decrease along with the increasing of Al content and keep the same pace as the calculated PCJ).The attenuation coefficients a_P and aIincrease at first and decrease later with the increasing of aluminum content,and they reached the maximal values with30% Al containing,which keeps the same pace as the calculated QV.
文摘Computations for air gap response of a semisubmersible platform based on a 3D numerical wave tank approach are presented.The developed method is in time domain and can consider nonlinearities associated with incident wave and hydrostatic forces exactly in determining the body response, but the interaction hydrodynamics of radiation and diffraction are based on simplified linearization assumptions. The incident wave can be defined by any suitable wave theory and here defined by a fully nonlinear numerical wave model. After verifying the present computations results in its degenerated linearized version against the usual linear 3D Green function–based frequency-domain results for air gap predictions, systematic comparative studies are undertaken between linear and the approximate nonlinear solutions. It is found that nonlinear computations can yield considerably conservative predictions as compared to fully linear calculations, amounting to a difference of up to 30%–40% in the minimum air gap in steep ambient incident waves at high and moderate frequencies.
基金Zhejiang Provincial Natural Science Foundation of China under contract No.LR15D060001the National Program on Global Change and Air-Sea Interactions under contract No.GASI-IPOVAI-04the National Natural Science Foundation of China under contract Nos 41476021,41706034 and 41321004
文摘Air–sea exchange plays a vital role in the development and maintenance of tropical cyclones(TCs). Although studies have suggested the dependence of air–sea fluxes on surface waves and sea spray, how these processes modify those fluxes under TC conditions have not been sufficiently investigated based on in-situ observations.Using continuous meteorological and surface wave data from a moored buoy in the northern South China Sea,this study examines the effects of surface waves and sea spray on air–sea fluxes during the passage of Typhoon Hagupit. The mooring was within about 40 km of the center of Hagupit. Surface waves could increase momentum flux to the ocean by about 15%, and sea spray enhanced both sensible and latent heat fluxes to the atmosphere,causing Hagupit to absorb 500 W/m^2 more heat flux from the ocean. These results have powerful implications for understanding TC–ocean interaction and improving TC intensity forecasting.
基金Project supported by the National Natural Science Foundation of China (Grant No 60578015).
文摘The influence of air pressure on mechanical effect of laser plasma shock wave in a vacuum chamber produced by a Nd:YAG laser has been studied. The laser pulses with pulse width of 10ns and pulse energy of about 320mJ at 1.06μm wavelength is focused on the aluminium target mounted on a ballistic pendulum, and the air pressure in the chamber changes from 2.8 × 10^ 3 to 1.01 × 10^5pa. The experimental results show that the impulse coupling coefficient changes as the air pressure and the distance of the target from focus change. The mechanical effects of the plasma shock wave on the target are analysed at different distances from focus and the air pressure.
基金supported by the National Natural Science Foundation of China(Grant Nos. 50909089 and 40911140281)Qingdao S&T Development Program(09-1-3-41-jch)Korean Ministry of Land,Transport & Maritime Affairs through KORDI Program
文摘Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numerical wave tank based on the two-phase VOF model is established in the present study toinvestigate the operating performance of OWC air chamber. The RANS equations, standard k-ε turbulence model and dynamic mesh technology are employed in the numerical model. The effects of incident wave conditions and shape parameters on the wave energy converting efficiency are studied and the capability of the present numerical wave tank on the corresponding engineering application is validated.
基金This study is partly supported by National Key Programme for Developing Basic Sciences(G1998040903)
文摘The wave-CISK (cumulus convection heating feedback), the air-sea interaction and the evaporation-wind feedback are together introduced into a simple theoretical model, in order to understand their effect on driving tropical atmospheric intraseasonal oscillation (ISO). The results showed that among the introduced dynamical processes the wave-CISK plays a major role in reducing phase speed of the wave to be closer to the observed tropical ISO. While the evaporation-wind feedback plays a major role in unstabilizing the wave. The air-sea interaction has certain effect on slowing down the phase speed of the wave. Therefore, the wave-CISK and evaporation-wind feedback can be regarded as fundamental dynamical mechanism of the tropical ISO. This study also shows that since the effects of the evaporation-wind feedback and the air-sea interaction were introduced, the excited wave is zonally dispersive, which can dynamically explain the activity feature of the observed ISO in the tropical atmosphere very well.
基金Project supported by the National Science Foundation of China
文摘A mesoscale inertia-gravitational wave at 200 hPa is analysed. The reasons of this wave occurring are also discussed. It is indicated that the occurrence of this wave is due to inertia-gravitational instability, and closely related to horizontal and vertical shear of wind.
文摘Shock wave is a detriment in the development of supersonic aircrafts;it increases flow drag as well as surface heating from additional friction;it also initiates sonic boom on the ground which precludes supersonic jetliner to fly overland. A shock wave mitigation technique is demonstrated by experiments conducted in a Mach 2.5 wind tunnel. Non-thermal air plasma generated symmetrically in front of a wind tunnel model and upstream of the shock, by on-board 60 Hz periodic electric arc discharge, works as a plasma deflector, it deflects incoming flow to transform the shock from a well-defined attached shock into a highly curved shock structure. In a sequence with increasing discharge intensity, the transformed curve shock increases shock angle and moves upstream to become detached with increasing standoff distance from the model. It becomes diffusive and disappears near the peak of the discharge. The flow deflection increases the equivalent cone angle of the model, which in essence, reduces the equivalent Mach number of the incoming flow, manifesting the reduction of the shock wave drag on the cone. When this equivalent cone angle exceeds a critical angle, the shock becomes detached and fades away. This shock wave mitigation technique helps drag reduction as well as eliminates sonic boom.
基金supported by the National Natural Science Foundation of China(412041114157414641774162)
文摘This paper numerically investigates the radio wave scattering by the artificial acoustic disturbance in the atmospheric boundary layer. The numerical model is based on the finitedifference time-domain(FDTD) method for radio wave propagation and fluid simulation for atmospheric disturbance by acoustics waves. The characteristics of radio wave scattering propagation in the artificial acoustic perturbations are investigated by this numerical model. The numerical simulation results demonstrate that the radio wave propagation scattered by acoustic scatterer has the characteristic of forward tropospheric scatter. When the radio waves are scattered, they distribute in all directions; a majority of radio waves continues to propagate along the original direction, and only a small part of the energy is scattered. For the same acoustic scatterer, if we merely change the radio wave emission elevation, the horizontal spans of forward scattering radio wave packets centers gradually decrease with the increasing of emission elevations; and the energy of wave packets increases firstly and then decreases with launching elevation, reaching the maximum at a certain angle. If we merely change the wave emitting position, the horizontal spans decrease with the increasing of emission positions, and the energy of wave packets also increases firstly and then decreases with launch position, reaching the maximum at a certain position. This approach can be very promising for atmospheric scatter communications.
文摘When the spacecraft flies much faster than the sound speed (~1200 km/h), the airflow disturbances deflected forward from the spacecraft cannot get away from the spacecraft and form a shock wave in front of it. Shock waves have been a detriment for the development of supersonic aircrafts, which have to overcome high wave drag and surface heating from additional friction. Shock wave also produces sonic booms. The noise issue raises environmental concerns, which have precluded routine supersonic flight over land. Therefore, mitigation of shock wave is essential to advance the development of supersonic aircrafts. A plasma mitigation technique is studied. A theory is presented to show that shock wave structure can be modified via flow deflection. Symmetrical deflection evades the need of exchanging the transverse momentum between the flow and the deflector. The analysis shows that the plasma generated in front of the model can effectively deflect the incoming flow. A non-thermal air plasma, generated by on-board 60 Hz periodic electric arc discharge in front of a wind tunnel model, was applied as a plasma deflector for shock wave mitigation technique. The experiment was conducted in a Mach 2.5 wind tunnel. The results show that the air plasma was generated symmetrically in front of the wind tunnel model. With increasing discharge intensity, the plasma deflector transforms the shock from a welldefined attached shock into a highly curved shock structure with increasing standoff distance from the model;this curved shock has increased shock angle and also appears in increasingly diffused form. In the decay of the discharge intensity, the shock front is first transformed back to a well-defined curve shock, which moves downstream to become a perturbed oblique shock;the baseline shock front then reappears as the discharge is reduced to low level again. The experimental observations confirm the theory. The steady of the incoming flow during the discharge cycle is manifested by the repeat of the baseline shock front.
基金The authors would like to acknowledge the National Natural Science Foundation of China(Grant Nos.11802137,11702143)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX19_0292)+1 种基金the Natural Science Foundation for Young Scientists of Jiangsu Province of China(Grant No.BK20190468)the Fundamental Research Funds for the Central Universities(Grant Nos.30918011343,30919011259,309190112A1).
文摘In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE including the initiation,instabilities,and propulsive performance.A hybrid MPI t OpenMP parallel computing model is applied and it is proved to be able to obtain a more effective parallel performance on high performance computing(HPC)systems.A series of cases with the total pressure of 1 MPa,1.5 MPa,2 MPa,and the equivalence ratio of 0.9,1,1.4 are simulated.On one hand,the total pressure shows a significant impact on the instabilities of rotating detonation waves.The instability phenomenon is observed in cases with low total pressure(1 MPa)and weakened with the increase of the total pressure.The total pressure has a small impact on the detonation wave velocity and the specific impulse.On the other hand,the equivalence ratio shows a negligible influence on the instabilities,while it affects the ignition process and accounts for the detonation velocity deficit.It is more difficult to initiate rotating detonation waves directly in the lean fuel operation condition.Little difference was observed in the thrust with different equivalence ratios of 0.9,1,and 1.4.The highest specific impulse was obtained in the lean fuel cases,which is around 2700 s.The findings could provide insights into the understanding of the operation characteristics of kerosene/air RDE.