期刊文献+
共找到1,111篇文章
< 1 2 56 >
每页显示 20 50 100
Modeling of the whole process of shock wave overpressure of freefield air explosion 被引量:8
1
作者 Zai-qing Xue Shunping Li +2 位作者 Chun-liang Xin Li-ping Shi Hong-bin Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第5期815-820,共6页
The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem.It is generally considered that the waveform consists of overpressure peak,positive pressure zone and negative pr... The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem.It is generally considered that the waveform consists of overpressure peak,positive pressure zone and negative pressure zone.Most of current practice usually considers only the positive pressure.Many empirical relations are available to predict overpressure peak,the positive pressure action time and pressure decay law.However,there are few models that can predict the whole waveform.The whole process of explosion shock wave overpressure,which was expressed as the product of the three factor functions of peak,attenuation and oscillation,was proposed in the present work.According to the principle of explosion similarity,the scaled parameters were introduced and the empirical formula was absorbed to form a mathematical model of shock wave overpressure.Parametric numerical simulations of free-field air explosions were conducted.By experimental verification of the AUTODYN numerical method and comparing the analytical and simulated curves,the model is proved to be accurate to calculate the shock wave overpressure under free-field air explosion.In addition,through the model the shock wave overpressure at different time and distance can be displayed in three dimensions.The model makes the time needed for theoretical calculation much less than that for numerical simulation. 展开更多
关键词 air explosion Shock wave OVERPRESSURE Free field Experimental VERIFICATION NUMERICAL simulation
下载PDF
A REGIONAL COUPLED AIR-SEA-WAVE MODEL: SIMULATION OF UPPER-OCEAN RESPONSES TO AN IDEALIZED TROPICAL CYCLONE 被引量:4
2
作者 郑运霞 黄伟 于润玲 《Journal of Tropical Meteorology》 SCIE 2015年第3期232-245,共14页
In this study a coupled air-sea-wave model system, containing the model components of GRAPES-TCM, ECOM-si and WAVEWATCH III, is established based on an air-sea coupled model. The changes of wave state and the effects ... In this study a coupled air-sea-wave model system, containing the model components of GRAPES-TCM, ECOM-si and WAVEWATCH III, is established based on an air-sea coupled model. The changes of wave state and the effects of sea spray are both considered. Using the complex air-sea-wave model, a set of idealized simulations was applied to investigate the effects of air-sea-wave interaction in the upper ocean. Results show that air-wave coupling can strengthen tropical cyclones while air-sea coupling can weaken them; and air-sea-wave coupling is comparable to that of air-sea coupling, as the intensity is almost unchanged with the wave model coupled to the air-sea coupled model.The mixing by vertical advection is strengthened if the wave effect is considered, and causes much more obvious sea surface temperature(SST) decreases in the upper ocean in the air-sea coupled model. Air-wave coupling strengthens the air-sea heat exchange, while the thermodynamic coupling between the atmosphere and ocean weakens the air-sea heat exchange: the air-sea-wave coupling is the result of their balance. The wave field distribution characteristic is determined by the wind field. Experiments are also conducted to simulate ocean responses to different mixed layer depths.With increasing depth of the initial mixed layer, the decrease of SST weakens, but the temperature decrease of deeper layers is enhanced and the loss of heat in the upper ocean is increased. The significant wave height is larger when the initial mixed layer depth increases. 展开更多
关键词 air-sea-wave coupled model tropical cyclone upper ocean response mixed layer depth
下载PDF
A study on dynamical features of air-sea coupling waves in the tropics 被引量:2
3
作者 Yang Xiuqun and Huang Shisong Department of Atmospheric Sciences, Nanjing University, Nanjing 210008, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1993年第3期379-393,共15页
The dynamical features of air-sea coupling waves and their stabilities in a simple coupled air-sea model in the tropics have been studied with respect to interaction occurring among different types of the free waves i... The dynamical features of air-sea coupling waves and their stabilities in a simple coupled air-sea model in the tropics have been studied with respect to interaction occurring among different types of the free waves in the o-cean and in the atmosphere. It is pointed out that there exist a stable and an unstable air-sea interaction modes in the tropical coupled system , respectively. The propagation of the unstable mode relies greatly on the zonal space scale, i. e. only for wave length ranging from 5 000 km to 10 000 km can the disturbance unstably move slowly eastward. The waves that slowly propagate unstably eastward agree well with the observational facts. Finally,it is also proposed that the interaction between Kelvin wave in one medium and Rossby wave in another medium is a necessary condition for the occurrence of destabilization of the coupled air-sea system in the tropics. 展开更多
关键词 air-sea interaction coupling waves FEATURES
下载PDF
Experimental Investigation on Shock Wave Characteristics of Aluminized Explosives in Air Blast 被引量:1
4
作者 Xiaoyu Duan Qingzhong Cui +2 位作者 Xueyong Guo Qiushi Wang Qingjie Jiao 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期165-173,共9页
To investigate the shock wave characteristics of RDX-based aluminized explosives,air blast tests were conducted for measuring the parameters of 10 kg aluminized explosives which contained 0-40% aluminum.The results sh... To investigate the shock wave characteristics of RDX-based aluminized explosives,air blast tests were conducted for measuring the parameters of 10 kg aluminized explosives which contained 0-40% aluminum.The results showed that with the increasing of aluminum content,the overpressures and impulses increase at first and then decrease within 7 m or 5 m,which reached the maximum when aluminum content was 20% or 30%.Power exponential formulas are used to fit the shock wave parameters vs scaled distance,where an equal weight of TNT is used to calculate the scaled distance.The overpressures of HL0 and TNT in tested locations not only conform to the similar law,but also conform to the same attenuation law after gaining the scaled distances of equal TNT mass.The pre-exponential factors of overpressure and impulse,kp and kI,decrease along with the increasing of Al content and keep the same pace as the calculated PCJ).The attenuation coefficients a_P and aIincrease at first and decrease later with the increasing of aluminum content,and they reached the maximal values with30% Al containing,which keeps the same pace as the calculated QV. 展开更多
关键词 aluminized explosives air blast shock wave ATTENUATION
下载PDF
Air Gap Prediction for Floating Bodies Using a 3D Numerical Wave Tank Approach 被引量:1
5
作者 Shivaji Ganesan T. Debabrata Sen 《Journal of Marine Science and Application》 CSCD 2018年第4期531-549,共19页
Computations for air gap response of a semisubmersible platform based on a 3D numerical wave tank approach are presented.The developed method is in time domain and can consider nonlinearities associated with incident ... Computations for air gap response of a semisubmersible platform based on a 3D numerical wave tank approach are presented.The developed method is in time domain and can consider nonlinearities associated with incident wave and hydrostatic forces exactly in determining the body response, but the interaction hydrodynamics of radiation and diffraction are based on simplified linearization assumptions. The incident wave can be defined by any suitable wave theory and here defined by a fully nonlinear numerical wave model. After verifying the present computations results in its degenerated linearized version against the usual linear 3D Green function–based frequency-domain results for air gap predictions, systematic comparative studies are undertaken between linear and the approximate nonlinear solutions. It is found that nonlinear computations can yield considerably conservative predictions as compared to fully linear calculations, amounting to a difference of up to 30%–40% in the minimum air gap in steep ambient incident waves at high and moderate frequencies. 展开更多
关键词 3D NUMERICAL wave TANK air gap responses TIME-DOMAIN APPROACH NUMERICAL wave F–Knonlinear
下载PDF
Effects of surface waves and sea spray on air–sea fluxes during the passage of Typhoon Hagupit 被引量:6
6
作者 HE Hailun WU Qiaoyan +4 位作者 CHEN Dake SUN Jia LIANG Chujin JIN Weifang XU Yao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第5期1-7,共7页
Air–sea exchange plays a vital role in the development and maintenance of tropical cyclones(TCs). Although studies have suggested the dependence of air–sea fluxes on surface waves and sea spray, how these processe... Air–sea exchange plays a vital role in the development and maintenance of tropical cyclones(TCs). Although studies have suggested the dependence of air–sea fluxes on surface waves and sea spray, how these processes modify those fluxes under TC conditions have not been sufficiently investigated based on in-situ observations.Using continuous meteorological and surface wave data from a moored buoy in the northern South China Sea,this study examines the effects of surface waves and sea spray on air–sea fluxes during the passage of Typhoon Hagupit. The mooring was within about 40 km of the center of Hagupit. Surface waves could increase momentum flux to the ocean by about 15%, and sea spray enhanced both sensible and latent heat fluxes to the atmosphere,causing Hagupit to absorb 500 W/m^2 more heat flux from the ocean. These results have powerful implications for understanding TC–ocean interaction and improving TC intensity forecasting. 展开更多
关键词 air-sea flux surface wave sea spray bulk formula tropical cyclone
下载PDF
Influence of air pressure on mechanical effect of laser plasma shock wave 被引量:3
7
作者 章玉珠 王广安 +3 位作者 朱金荣 沈中华 倪晓武 陆建 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第9期2752-2756,共5页
The influence of air pressure on mechanical effect of laser plasma shock wave in a vacuum chamber produced by a Nd:YAG laser has been studied. The laser pulses with pulse width of 10ns and pulse energy of about 320mJ... The influence of air pressure on mechanical effect of laser plasma shock wave in a vacuum chamber produced by a Nd:YAG laser has been studied. The laser pulses with pulse width of 10ns and pulse energy of about 320mJ at 1.06μm wavelength is focused on the aluminium target mounted on a ballistic pendulum, and the air pressure in the chamber changes from 2.8 × 10^ 3 to 1.01 × 10^5pa. The experimental results show that the impulse coupling coefficient changes as the air pressure and the distance of the target from focus change. The mechanical effects of the plasma shock wave on the target are analysed at different distances from focus and the air pressure. 展开更多
关键词 mechanical effect plasma shock wave impulse coupling coefficient air pressure
下载PDF
Numerical Study of Air Chamber for Oscillating Water Column Wave Energy Convertor 被引量:7
8
作者 刘臻 HYUN Beom-Soo HONG Keyyong 《China Ocean Engineering》 SCIE EI 2011年第1期169-178,共10页
Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numeri... Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numerical wave tank based on the two-phase VOF model is established in the present study toinvestigate the operating performance of OWC air chamber. The RANS equations, standard k-ε turbulence model and dynamic mesh technology are employed in the numerical model. The effects of incident wave conditions and shape parameters on the wave energy converting efficiency are studied and the capability of the present numerical wave tank on the corresponding engineering application is validated. 展开更多
关键词 Oscillating water column numerical wave tank operating performance air chamber shape parameter
下载PDF
CISK Kelvin Wave with Evaporation-Wind Feedbackand Air-Sea Interaction-A Further Study ofTropical Intraseasonal Oscillation Mechanism 被引量:2
9
作者 李崇银 禚汉如 王作台 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第3期379-390,共12页
The wave-CISK (cumulus convection heating feedback), the air-sea interaction and the evaporation-wind feedback are together introduced into a simple theoretical model, in order to understand their effect on driving tr... The wave-CISK (cumulus convection heating feedback), the air-sea interaction and the evaporation-wind feedback are together introduced into a simple theoretical model, in order to understand their effect on driving tropical atmospheric intraseasonal oscillation (ISO). The results showed that among the introduced dynamical processes the wave-CISK plays a major role in reducing phase speed of the wave to be closer to the observed tropical ISO. While the evaporation-wind feedback plays a major role in unstabilizing the wave. The air-sea interaction has certain effect on slowing down the phase speed of the wave. Therefore, the wave-CISK and evaporation-wind feedback can be regarded as fundamental dynamical mechanism of the tropical ISO. This study also shows that since the effects of the evaporation-wind feedback and the air-sea interaction were introduced, the excited wave is zonally dispersive, which can dynamically explain the activity feature of the observed ISO in the tropical atmosphere very well. 展开更多
关键词 Intraseasonal oscillation CISK Kelvin wave Evaporation-wind feedback air-sea interaction
下载PDF
Analysis and Study of a Mesoscale Inertia-Gravitational Wave in Upper Air
10
作者 张颖 沈新勇 张铭 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1990年第2期220-226,共7页
A mesoscale inertia-gravitational wave at 200 hPa is analysed. The reasons of this wave occurring are also discussed. It is indicated that the occurrence of this wave is due to inertia-gravitational instability, and c... A mesoscale inertia-gravitational wave at 200 hPa is analysed. The reasons of this wave occurring are also discussed. It is indicated that the occurrence of this wave is due to inertia-gravitational instability, and closely related to horizontal and vertical shear of wind. 展开更多
关键词 Analysis and Study of a Mesoscale Inertia-Gravitational wave in Upper air
下载PDF
Air Plasma Mitigation of Shock Wave 被引量:2
11
作者 Spencer P. Kuo 《Advances in Aerospace Science and Technology》 2016年第2期59-69,共11页
Shock wave is a detriment in the development of supersonic aircrafts;it increases flow drag as well as surface heating from additional friction;it also initiates sonic boom on the ground which precludes supersonic jet... Shock wave is a detriment in the development of supersonic aircrafts;it increases flow drag as well as surface heating from additional friction;it also initiates sonic boom on the ground which precludes supersonic jetliner to fly overland. A shock wave mitigation technique is demonstrated by experiments conducted in a Mach 2.5 wind tunnel. Non-thermal air plasma generated symmetrically in front of a wind tunnel model and upstream of the shock, by on-board 60 Hz periodic electric arc discharge, works as a plasma deflector, it deflects incoming flow to transform the shock from a well-defined attached shock into a highly curved shock structure. In a sequence with increasing discharge intensity, the transformed curve shock increases shock angle and moves upstream to become detached with increasing standoff distance from the model. It becomes diffusive and disappears near the peak of the discharge. The flow deflection increases the equivalent cone angle of the model, which in essence, reduces the equivalent Mach number of the incoming flow, manifesting the reduction of the shock wave drag on the cone. When this equivalent cone angle exceeds a critical angle, the shock becomes detached and fades away. This shock wave mitigation technique helps drag reduction as well as eliminates sonic boom. 展开更多
关键词 Shock wave Mitigation Electric Discharge air Plasma Deflector SHADOWGRAPH Drag Reduction Wind Tunnel Charge Transfer
下载PDF
Numerical study of radio wave propagation in clear air acoustic scatterer
12
作者 WANG Panpan ZHOU Chen ZHAO Zhengyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期684-692,共9页
This paper numerically investigates the radio wave scattering by the artificial acoustic disturbance in the atmospheric boundary layer. The numerical model is based on the finitedifference time-domain(FDTD) method f... This paper numerically investigates the radio wave scattering by the artificial acoustic disturbance in the atmospheric boundary layer. The numerical model is based on the finitedifference time-domain(FDTD) method for radio wave propagation and fluid simulation for atmospheric disturbance by acoustics waves. The characteristics of radio wave scattering propagation in the artificial acoustic perturbations are investigated by this numerical model. The numerical simulation results demonstrate that the radio wave propagation scattered by acoustic scatterer has the characteristic of forward tropospheric scatter. When the radio waves are scattered, they distribute in all directions; a majority of radio waves continues to propagate along the original direction, and only a small part of the energy is scattered. For the same acoustic scatterer, if we merely change the radio wave emission elevation, the horizontal spans of forward scattering radio wave packets centers gradually decrease with the increasing of emission elevations; and the energy of wave packets increases firstly and then decreases with launching elevation, reaching the maximum at a certain angle. If we merely change the wave emitting position, the horizontal spans decrease with the increasing of emission positions, and the energy of wave packets also increases firstly and then decreases with launch position, reaching the maximum at a certain position. This approach can be very promising for atmospheric scatter communications. 展开更多
关键词 radio waves scattering propagation clear air atmo-sphere acoustic scatterer scatter communication.
下载PDF
Shock Wave Mitigation by Air Plasma Deflector
13
作者 Spencer P. Kuo 《Advances in Aerospace Science and Technology》 2018年第4期71-88,共18页
When the spacecraft flies much faster than the sound speed (~1200 km/h), the airflow disturbances deflected forward from the spacecraft cannot get away from the spacecraft and form a shock wave in front of it. Shock w... When the spacecraft flies much faster than the sound speed (~1200 km/h), the airflow disturbances deflected forward from the spacecraft cannot get away from the spacecraft and form a shock wave in front of it. Shock waves have been a detriment for the development of supersonic aircrafts, which have to overcome high wave drag and surface heating from additional friction. Shock wave also produces sonic booms. The noise issue raises environmental concerns, which have precluded routine supersonic flight over land. Therefore, mitigation of shock wave is essential to advance the development of supersonic aircrafts. A plasma mitigation technique is studied. A theory is presented to show that shock wave structure can be modified via flow deflection. Symmetrical deflection evades the need of exchanging the transverse momentum between the flow and the deflector. The analysis shows that the plasma generated in front of the model can effectively deflect the incoming flow. A non-thermal air plasma, generated by on-board 60 Hz periodic electric arc discharge in front of a wind tunnel model, was applied as a plasma deflector for shock wave mitigation technique. The experiment was conducted in a Mach 2.5 wind tunnel. The results show that the air plasma was generated symmetrically in front of the wind tunnel model. With increasing discharge intensity, the plasma deflector transforms the shock from a welldefined attached shock into a highly curved shock structure with increasing standoff distance from the model;this curved shock has increased shock angle and also appears in increasingly diffused form. In the decay of the discharge intensity, the shock front is first transformed back to a well-defined curve shock, which moves downstream to become a perturbed oblique shock;the baseline shock front then reappears as the discharge is reduced to low level again. The experimental observations confirm the theory. The steady of the incoming flow during the discharge cycle is manifested by the repeat of the baseline shock front. 展开更多
关键词 Shock wave MITIGATION Electric DISCHARGE air Plasma DEFLECTOR SHADOWGRAPH Drag Reduction Wind TUNNEL Charge Transfer
下载PDF
H_2/Air连续旋转爆震发动机推力测试(Ⅱ)-双波模态下的推力 被引量:17
14
作者 林伟 周进 +1 位作者 林志勇 刘世杰 《推进技术》 EI CAS CSCD 北大核心 2015年第5期641-649,共9页
在环缝-喷孔对撞式喷射的H2/Air连续旋转爆震模型发动机上实现双波自持。详细分析了连续旋转爆震波以双波模态自持传播的典型波形特征和时域、频域特征。测量了模型发动机工作在双波形模态下所产生的一维推力,讨论了比冲等推力性能。时... 在环缝-喷孔对撞式喷射的H2/Air连续旋转爆震模型发动机上实现双波自持。详细分析了连续旋转爆震波以双波模态自持传播的典型波形特征和时域、频域特征。测量了模型发动机工作在双波形模态下所产生的一维推力,讨论了比冲等推力性能。时频特性和推力积分表明:出口背压为大气压时,在空气流量786.6g·s-1,氢气流量20g·s-1,当量比为0.8733的工况下,模型发动机以平均传播频率10.5809k Hz,平均传播速度1578.9m·s-1的双波模态稳定工作超过650ms。产生可靠的有效推力约808.5N。以火箭模式计算,有效排气速度为1002.3m·s-1,总比冲为102.3s;以冲压模式计算,有效排气速度(氢气消耗率)为40425m·s-1,燃料比冲为4125s,所消耗氢气的单位面积质量流率为13404g·m-2·s-1,单位推力为1027.8m·s-1。相比于单波模态,双波模态使得燃烧室内压力更为均匀,高频推力曲线振荡幅值小。爆震波头个数增多有利于推力稳定。 展开更多
关键词 连续旋转爆震模型发动机 H2/air 双波模态 时频分析 推力测量 推力积分 比冲
下载PDF
H_2/Air连续旋转爆震波的起爆及传播过程试验 被引量:24
15
作者 刘世杰 林志勇 +2 位作者 林伟 周朱林 刘卫东 《推进技术》 EI CAS CSCD 北大核心 2012年第3期483-489,共7页
在环缝-喷孔对撞式喷注模型发动机上,采用H2/O2热射流切向喷注的起爆方式,进行了H2/Air组合的连续旋转爆震试验,试验成功起爆并实现了爆震波的持续旋转传播。切向喷注的热射流并没有直接诱导形成旋转爆震波,从点火到形成稳定传播的旋转... 在环缝-喷孔对撞式喷注模型发动机上,采用H2/O2热射流切向喷注的起爆方式,进行了H2/Air组合的连续旋转爆震试验,试验成功起爆并实现了爆震波的持续旋转传播。切向喷注的热射流并没有直接诱导形成旋转爆震波,从点火到形成稳定传播的旋转爆震波之间存在时间间隔。对高频信号的时频分析结果表明,在该试验工况下,旋转爆震波的传播过程非常稳定,其传播频率为5.5~5.95 kHz,平均传播频率为5.75 kHz,对应的平均传播速度为1716.4m/s,为理论预测值的91.14%。在没有测量高频压力的情况下开展了长程试验,结果表明,连续旋转爆震波也可以在更长的时间范围内稳定工作。 展开更多
关键词 连续旋转爆震波 H2/air组合 喷注方式 试验研究
下载PDF
H_2/Air连续旋转爆震发动机推力测试(I)单波模态下的推力 被引量:18
16
作者 林伟 周进 +1 位作者 林志勇 刘世杰 《推进技术》 EI CAS CSCD 北大核心 2015年第4期495-503,共9页
在环缝-喷孔对撞式喷射的连续旋转爆震模型发动机上,以H2/Air为工质,对连续旋转爆震波以单波模态稳定自持的典型波形特征和时域、频域特征进行了研究。直接测量了模型发动机工作在该模态下产生的一维推力,讨论了比冲等推进性能。试验结... 在环缝-喷孔对撞式喷射的连续旋转爆震模型发动机上,以H2/Air为工质,对连续旋转爆震波以单波模态稳定自持的典型波形特征和时域、频域特征进行了研究。直接测量了模型发动机工作在该模态下产生的一维推力,讨论了比冲等推进性能。试验结果表明:出口背压为大气压时,在空气流量253 g·s-1,氢气流量6.15 g·s-1,当量比为0.834的工况下,模型发动机以平均传播频率5.5563 k Hz、平均传播速度1658.3 m·s-1的单波模态稳定工作360 ms。产生可靠的有效推力约为183.7 N。以火箭模式计算,有效排气速度为708.9 m·s-1,总比冲为72.34 s;以冲压模式计算,有效排气速度(氢气消耗率)为29870 m·s-1,燃料比冲为3048 s,消耗的氢气的单位面积质量流率为4122 g·m-2·s-1,单位推力为726 m·s-1。推力曲线的面积积分表明旋转爆震模型发动机所提供的推力比较稳定;微观来看,推力波形与爆震波高频压力波形耦合,围绕推力平均值振荡。 展开更多
关键词 连续旋转爆震模型发动机 单波模态 时频分析 推力测量 推力积分 比冲 推力稳定性
下载PDF
台风“梅花”诱发平流层重力波的数值模拟与AIRS观测 被引量:17
17
作者 洪军 姚志刚 +2 位作者 韩志刚 赵增亮 方涵先 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2015年第7期2283-2293,共11页
为了分析台风这类强对流诱发平流层重力波的过程,本文利用中尺度数值模式WRF-ARW(V3.5)和卫星高光谱红外大气探测器AIRS数据对2011年第9号强热带气旋"梅花"的重力波特征进行了分析.首先,针对模式输出的垂直速度场资料的分析表明,台... 为了分析台风这类强对流诱发平流层重力波的过程,本文利用中尺度数值模式WRF-ARW(V3.5)和卫星高光谱红外大气探测器AIRS数据对2011年第9号强热带气旋"梅花"的重力波特征进行了分析.首先,针对模式输出的垂直速度场资料的分析表明,台风在对流层各个方向上几乎都具有诱发重力波的能量,而在平流层内则呈现出只集中于台风中心以东的半圆弧状波动,且重力波到达平流层后其影响的水平范围可达1000km.此外,平流层波动与对流层雨带在形态、位置以及尺度上均具有一定的相似性.其次,对风场的分析结果表明,不同高度上波动形态的差异主要是由于重力波垂直上传的过程中受到了平流层向西传的背景风场以及风切变的调制作用,揭示了重力波逆着背景流垂直上传的特征.随后,基于FFT波谱分析的结果表明,"梅花"诱发的平流层重力波水平波长中心值达到了1000km,周期在15~25h,垂直波长主要在8~12km.最后,利用AIRS观测资料分析了平流层30~40km高度上的大气波动,得到了与数值模拟结果相一致的半圆弧状波动.对比结果也验证了WRF对台风诱发平流层重力波的波动形态、传播方向、不同时刻扰动强度的变化以及影响范围的模拟效果.此外,也揭示了多资料的结合对比有助于更加全面地了解台风诱发平流层重力波的波动特征. 展开更多
关键词 平流层 重力波 WRF 数值模拟 airS
下载PDF
激波冲击下air/SF_6界面的Richtmyer-Meshkov不稳定性 被引量:5
18
作者 刘金宏 邹立勇 +3 位作者 柏劲松 谭多望 黄文斌 郭文灿 《爆炸与冲击》 EI CAS CSCD 北大核心 2011年第2期135-140,共6页
实验研究了低马赫数(1.27)激波作用air/SF6界面的RM不稳定性问题。air/SF6初始正弦界面由厚度为1~2!m的薄膜相隔得到,用阴影法测试界面演化过程。实验结果表明:由于不稳定性重流体(SF6)向轻流体(air)演化成"尖钉"结构,而轻... 实验研究了低马赫数(1.27)激波作用air/SF6界面的RM不稳定性问题。air/SF6初始正弦界面由厚度为1~2!m的薄膜相隔得到,用阴影法测试界面演化过程。实验结果表明:由于不稳定性重流体(SF6)向轻流体(air)演化成"尖钉"结构,而轻流体演化为"气泡"结构;由于界面切向速度差的Kelvin-Helm-holtz不稳定性,"尖钉"头部翻转成蘑菇头形状;之后,蘑菇杆破碎。扰动振幅发展的实验结果与Zhang-Sohn模型和PPM数值计算的结果较吻合。 展开更多
关键词 流体力学 RICHTMYER-MESHKOV不稳定性 阴影方法 air/SF6界面 激波 激波管
下载PDF
AIRS观测资料研究全球平流层重力波特性 被引量:4
19
作者 郭文杰 姚志刚 +1 位作者 杨钧烽 胡雄 《空间科学学报》 CAS CSCD 北大核心 2021年第4期609-616,共8页
利用2012-2014年1月和7月AIRS(Atmospheric Infrared Sounder)第79通道的观测数据,分析了平流层重力波活动强弱的全球分布以及重力波发生频率的全球分布;分析了重力波活动随纬度和经度的变化特征,给出了重力波活动在全球范围内的热点区... 利用2012-2014年1月和7月AIRS(Atmospheric Infrared Sounder)第79通道的观测数据,分析了平流层重力波活动强弱的全球分布以及重力波发生频率的全球分布;分析了重力波活动随纬度和经度的变化特征,给出了重力波活动在全球范围内的热点区域及其活动强度;对比了白天与夜间的重力波活动强度及发生频率.研究表明重力波活动强度呈现出随纬度变化的特征,在低纬度地区(0°-30°),冬季半球重力波活动强度低,夏季半球重力波活动高;在中高纬度地区,冬季半球重力波活动强度高而夏季半球重力波活动强度低.在1月,全球重力波活动有4个突出的热点区域,分别为50°N附近欧洲大陆与大西洋交接地带、北美洲与大西洋交接地,20°S附近南美洲与大西洋交接地区、非洲与印度洋交接地区.在7月,重力波活动突出的地方为巴塔哥尼亚至南极半岛地区,以及50°S和75°E附近的印度洋区域.重力波活动强度在夜间大于白天,但是夜间的强重力波活动区域小于白天. 展开更多
关键词 airS 重力波 平流层 全球分布
下载PDF
Effects of total pressures and equivalence ratios on kerosene/air rotating detonation engines using a paralleling CE/SE method 被引量:9
20
作者 Fang Wang Chun-sheng Weng +3 位作者 Yu-wen Wu Qiao-dong Bai Quan Zheng Han Xu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第6期1805-1816,共12页
In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE inc... In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE including the initiation,instabilities,and propulsive performance.A hybrid MPI t OpenMP parallel computing model is applied and it is proved to be able to obtain a more effective parallel performance on high performance computing(HPC)systems.A series of cases with the total pressure of 1 MPa,1.5 MPa,2 MPa,and the equivalence ratio of 0.9,1,1.4 are simulated.On one hand,the total pressure shows a significant impact on the instabilities of rotating detonation waves.The instability phenomenon is observed in cases with low total pressure(1 MPa)and weakened with the increase of the total pressure.The total pressure has a small impact on the detonation wave velocity and the specific impulse.On the other hand,the equivalence ratio shows a negligible influence on the instabilities,while it affects the ignition process and accounts for the detonation velocity deficit.It is more difficult to initiate rotating detonation waves directly in the lean fuel operation condition.Little difference was observed in the thrust with different equivalence ratios of 0.9,1,and 1.4.The highest specific impulse was obtained in the lean fuel cases,which is around 2700 s.The findings could provide insights into the understanding of the operation characteristics of kerosene/air RDE. 展开更多
关键词 Kerosene/air rotating detonation waves Total pressure Equivalence ratio INSTABILITIES MPItOpenMP
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部