This paper presents a superhydrophobic melamine(ME)sponge(ME-g-PLMA)prepared via high-energy radiation-induced in situ covalent grafting of long-alkyl-chain dodecyl methacrylate(LMA)onto an ME sponge for efficient oil...This paper presents a superhydrophobic melamine(ME)sponge(ME-g-PLMA)prepared via high-energy radiation-induced in situ covalent grafting of long-alkyl-chain dodecyl methacrylate(LMA)onto an ME sponge for efficient oil–water separa-tion.The obtained ME-g-PLMA sponge had an excellent pore structure with superhydrophobic(water contact angle of 154°)and superoleophilic properties.It can absorb various types of oils up to 66–168 times its mass.The ME-g-PLMA sponge can continuously separate oil slicks in water by connecting a pump or separating oil underwater with a gravity-driven device.In addition,it maintained its highly hydrophobic properties even after long-term immersion in different corrosive solutions and repeated oil adsorption.The modified ME-g-PLMA sponge exhibited excellent separation properties and potential for oil spill cleanup.展开更多
Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of ...Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of gravity.W-MEL membranes were grown on stainless steel (SS) meshes through in-situ hydrothermal growth method facilitated with (3-aminopropyl)triethoxysilane (APTES) modification of stainless steel meshes,which promote the heterogeneous nucleation and crystal growth of W-MEL zeolites onto the mesh surface.W-MEL membranes were grown on different mesh size supports to investigate the effect of mesh size on the separation performance of the membrane.The assynthesized W-MEL membrane supported on 500 mesh (25μm)(W-MEL-500) exhibit the hydrophilic nature with a water contact angle of 11.8°and delivers the best hexane/water mixture separation with a water flux and separation efficiency of 46247 L·m^(-2)·h^(-1)and 99.5%,respectively.The wettability of W-MEL membranes was manipulated from hydrophilic to hydrophobic nature by chemically modifying with the fluorine-free compounds (hexadecyltrimethoxysilane (HDTMS) and dodecyltrimethoxysilane(DDTMS)) to achieve efficient oil-permselective separation of heavy oils from water.Among the hydrophobically modified W-MEL membranes,W-MEL-500-HDTMS having a water contact angle of146.4°delivers the best separation performance for dichloromethane/water mixtures with a constant oil flux and separation efficiency of 61490 L·m^(-2)·h^(-1)and 99.2%,respectively along with the stability tested up to 20 cycles.Both W-MEL-500-HDTMS and W-MEL-500-DDTMS membranes also exhibit similar separation performances for the separation of heavy oil from sea water along with a 20-fold lower corrosion rate in comparison with the bare stainless-steel mesh,indicating their excellent stability in seawater.Compared to the reported zeolite membranes for oil/water separation,the as-synthesized and hydrophobically modified W-MEL membranes shows competitive separation performances in terms of flux and separation efficiency,demonstrating the good potentiality for oil/water separation.展开更多
In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modific...In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modification with n-dodecyl mercaptan(DDT). This method provides a new strategy to fabricate superhydrophobic PU sponge with a water contact angle of 157° for absorbing oil with low cost and in large scale. It exhibits the strong absorption capacity and highly selective characteristic for various kinds of oils which can be recycled by simple squeezing. Besides, the as-prepared sponge can deal with the floating and underwater oils, indicating its application value in handling oil spills and domestic oily wastewater. The good self-cleaning ability shows the potential to clear the pollutants due to the ultralow adhesion to water. Especially, the most important point is that the superhydrophobic sponge can continuously and effectively separate the oil/water mixture against the condition of turbulent disturbance by using our designed device system, which exhibit its good superhydrophobicity, strong stability.Furthermore, the SS-PU still maintained stable absorption performance after 150 cycle tests without losing capacity obviously, showing excellent durability in long-term operation and significant potential as an efficient absorbent in large-scale dispose of oily water.展开更多
The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative ana...The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative analysis of interactions in oil-water separation is rarely recognized.Herein,we constructed an adaptable wettability membrane with multiple polymer networks by polydopamine(PDA)and mussel-inspired amphiphilic polymer.Based on the Owens three-probe liquid method,the surface energy of the modified membrane was verified to meet the adaptive wettability conditions,with surface energies(γ-8)of 147.6 mJ m^(−2)(superhydrophilic/underwater superoleophobic)and 49.87 mJ m^(−2)(superhydrophobic/superoleophobic),respectively.The adhesion or repulsion of the membrane to the oil phase under different conditions during the separation process was quantified by the chemical probe AFM technique.In addition,the oil-water selective separation mechanism was further analyzed in a simplified membrane microchannel model.The results show that the different wetting produces capillary additional pressure in opposite directions,resulting in different energies to be overcome when the oil or water passes through the microchannels,thus achieving selective separation.展开更多
Industrial production and domestic discharge produce a large amount of oily wastewater, which seriously affects the stability of the ecological environment. Membrane separation technology provides another path to trea...Industrial production and domestic discharge produce a large amount of oily wastewater, which seriously affects the stability of the ecological environment. Membrane separation technology provides another path to treating oily wastewater. And appropriate surface modification of the membrane helps to achieve high efficiency of treating oily wastewater. With green, economy and stability been more concerned.The focal research reports a completely biodegradable all cellulose composite filter paper(ACCFP) composed of Ⅰ-cellulose macrofibers and Ⅱ-cellulose matrix. It is a simple one-step impregnation method to adjust the surface microstructure of the pristine filter paper(PFP), and it does not involve with chemical reaction. The pre-wetted ACCFP consist of Ⅱ-cellulose hydrogel and Ⅰ-cellulose reinforcement in the process of oil-water separation. This layer of hydrogel is the fundamental to underwater superoleophobicity, which determines their eligibility for applications of efficient oil-water mixture or oil-in-water(oil/water) emulsion separation. The separation efficiency of oil-water mixture and oil/water emulsion exceed 95% and 99.9%, respectively. In addition, excellent mechanical properties of ACCFP in dry and wet conditions ensure its stability in service and prolong service life in applications. The focal study provides a new method for high-performance oil-water separation and it is more in line with sustainable chemistry.展开更多
It is well known that gas oils from oilsands bitumen are difficult to hydrotreat. In order to develop the most appropriate flow sheet and operating conditions, a thorough knowledge of the molecular structure and beha...It is well known that gas oils from oilsands bitumen are difficult to hydrotreat. In order to develop the most appropriate flow sheet and operating conditions, a thorough knowledge of the molecular structure and behaviour of bitumen and its gas oil products is needed. In this work, the gas oil samples are fractionated in an attempt to isolate and identify the problematic molecular species for hydrotreating. It is found that the major nitrogen sources in coker gas oils are associated with relatively small pentane insoluble species and an even smaller, highly polar, hexane insoluble species. Structural information obtained for these fractions indicates that they are formed during the cracking of resin molecules. Nitrogen speciation shows that the pyrroles are the primary nitrogen type, with pyridines also being an important species. Both nitrogen species are undesirable in the hydrotreating process. Pyrroles in particular are subject to polymerisation, producing gums and sediments that foul filters and other equipment while pyridines can directly deactivate the hydrotreating catalyst.展开更多
In order to understand the mechanism of air flooding shale oil, an online physical simulation method for enhanced shale oil recovery by air injection was established by integrating CT scanning and nuclear magnetic res...In order to understand the mechanism of air flooding shale oil, an online physical simulation method for enhanced shale oil recovery by air injection was established by integrating CT scanning and nuclear magnetic resonance(NMR). The development effect of shale oil by air flooding under different depletion pressures, the micro-production characteristics of pore throats with different sizes and the mechanism of shale oil recovery by air flooding were analyzed. The effects of air oxygen content, permeability, gas injection pressure, and fractures on the air flooding effect in shale and crude oil production in pores with different sizes were analyzed. The recovery of shale oil can be greatly improved by injecting air into the depleted shale reservoir, but the oil displacement efficiency and the production degree of different levels of pore throats vary with the injection timing. The higher the air oxygen content and the stronger the low-temperature oxidation, the higher the production degree of pores with different sizes and the higher the shale oil recovery. The higher the permeability and the better the pore throat connectivity, the stronger the fluid flow capacity and the higher the shale oil recovery. As the injection pressure increases, the lower limit of the production degree of pore throats decreases, but gas channeling may occur to cause a premature breakthrough;as a result, the recovery increases and then decreases. Fractures can effectively increase the contact area between gas and crude oil, and increase the air sweep coefficient and matrix oil drainage area by supplying oil to fractures through the matrix, which means that a proper fracturing before air injection can help to improve the oil displacement effect under a reasonable production pressure difference.展开更多
Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., ...Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., a porous ceramic membrane substrate, a polyvinylidene fluoride (PVDF) ultrafiltration sub-layer, and a polyamide/polyvinyl alcohol (PVA) composite thin top-layer. The PVDF polymer was east onto the tubular porous ceramic membranes with an immersion precipitation method, and the polyamide/PVA composite thin top-layer was fabricated with an inteffaeial polymerization method. The effects of the sub-layer composition and the recipe in the inteffaeial polymerization for fabricating the top-layer on the structure and performance of composite membranes were systematically investigated. The prepared composite membranes showed a good performance for treating the O/W microemulsions with a mean diameter of about 2.41μm. At the operating pressure of 0.4MPa, the hydraulic permeability remained steadily about 190L·m^-2·h^-1, the oil concentration in the permeate was less than 1.6mg·L^-1, and the oil rejection coefficient was always higher than 98.5% throughout the operation from the beginning.展开更多
Nowadays, oil spills have led to a serious environmental crisis of the world. To deal with this problem, inspired from super-hydrophobic lotus leaf, this study fabricated super-hydrophobic and super-lipophilic functio...Nowadays, oil spills have led to a serious environmental crisis of the world. To deal with this problem, inspired from super-hydrophobic lotus leaf, this study fabricated super-hydrophobic and super-lipophilic functionalized graphene oxide/polyurethane (FGP) sponge by a simple and inexpensive dip coating method. The resulting FGP sponge was characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy and water contact angle. The results expressed that FGP sponge exhibited a similar surface structure to that of a lotus leaf, and possessed the super-hydrophobic characteristic with the water contact angle (WAC) of 152°± 1 °. The absorption capacity and reusability were also investigated. It can be seen that, the FGP sponge can remove a wide range of oils and organic solvents from water with good absorption capacities (up to 35 times of its own mass). Significantly, after 10 cycles the absorption capacity of the oils and organic solvents was higher than 90°; for the reused FGP sponge, demonstrating the good reusability of the FGP sponge. Therefore, this study probably provided a simole way to remove the pollutions ofoil spills and toxic organism from water.展开更多
Discharging untreated oily wastewater into the environment disrupts the ecological balance,which is a global problem that requires urgent solutions.Superhydrophilic and superoleophilic fibrous medium(FM)effectively se...Discharging untreated oily wastewater into the environment disrupts the ecological balance,which is a global problem that requires urgent solutions.Superhydrophilic and superoleophilic fibrous medium(FM)effectively separated oil–water emulsion as it was hydrophobic underwater.But its separation efficiencies(SEs)first increased to 98.9%,then dropped to 97.6%in 10 min because of oil-fouling.To tackle this problem,FM deposited with 0%–10%silica nanoparticle(NPsFMs),then coated by fluorocarbon polymer(X-[CH_(2)CH_(2)O]nCH_(2)CH_(2)O-Y-NH-COOCH_(2)C4F9)(FCNPs FMs),was used to enhance its roughness and regulate its initial wettability to improve the anti-fouling property.FCFM and FCNPs FMs were hydrophobic and oleophobic in air and oleophobic underwater.Their water contact angles,oil contact angles and oil contact angles were 115.3°–121.1°,128.8°–136.5°,and 131.6°–136.7°,respectively,meeting the requirement of 90°–140°for coalescence separation.FCNPs FM-5 had the best separation performance with a constant value of 99.8%in 10 min,while that of FCNPs FM-10 slightly decreased to 99.5%.Theoretical released droplet(TRD)diameter,calculated by the square root of the product of pore radius and fiber diameter,was used for the evaluation of coalescence performance.Analyzed by two ideal models,TRD diameter and fiber diameter showed a parabola type relationship,proving that the separation efficiency was a collaborative work of wettability,pore size and fiber diameter.Also,it explained the SEs reduction from FCNPs FM-5 to FCNPs FM-10 was revelent to the three parameters.Moreover,FCNPsFMs effectively separated emulsions stabilized by cationic surfactant CTAB(SEs:97.3%–98.4%)and anionic surfactant SDBS(SEs:91.3%–93.4%).But they had an adverse effect on nonionic surfactant Tween-80 emulsion separation(SEs:94.0%–71.76%).Emulsions made by diverse oils can be effectively separated:octane(SEs:99.4%–100%),rapeseed oil(SEs:97.3%–98.8%),and diesel(SEs:95.2%–97.0%).These findings provide new insights for designing novel materials for oil–water separation by coalescence mechanism.展开更多
The cyclonic-static microbubble flotation column has dual effects including the cyclonic separation and floatation separation with the characteristics of the small lower limit of the effective separation size, short s...The cyclonic-static microbubble flotation column has dual effects including the cyclonic separation and floatation separation with the characteristics of the small lower limit of the effective separation size, short separation time, large handling capacity, and low operation cost. It shows significant advantages in the oily wastewater treatment field, especially the polymer flooding oily wastewater treatment aspect. In this paper, the cyclonic separation function mechanism of the cyclonic-static microbubble flotation column was studied, the impact of the parameters including the feeding rate, aeration rate, circulating pressure, and underflow split ratio on the cyclonic separation efficiency was investigated, and the cyclonic separation efficiency model was established as well. In addition, by applying the Doppler Laser Velocimeter (LDV) and Fluent simulation software, the test and simulation to the single-phase flow velocity field of the cyclonic separation section of the cyclonic-static microbubble flotation column were carried out, and the velocity distribution rule of the cyclonic separation section was analyzed under the singlephase flow conditions.展开更多
On the basis of the characteristics of a highly emulsified solid-liquid phase (fine particles, sticky consistency,black color, and low reuse ratio), waste rolling oily sludge has been a focal problem in the steel in...On the basis of the characteristics of a highly emulsified solid-liquid phase (fine particles, sticky consistency,black color, and low reuse ratio), waste rolling oily sludge has been a focal problem in the steel industry. In this article, a solid-liquid phase separation and resource recycling process was described, with pilot test results showing that flocculation-sedimentation is an effective pretreatment, and that the filtration-coagulationvacuum distillation process is simple and feasible with a 53.5% recovery rate for regenerated oil that is qualified for return to the roiling production line. Then,solid phase oil-sludge was extracted by solvents with a 77% metal resource recovery rate and a wide utilization range. Finally, according to the experimental results, a set of feasibility plans for a 50 t/a waste rolling oily sludge solid-liquid separation and resource recycle project was designed, with the expectation of 50% regenerated oil yield, 70% solid metal resource recovery, and a 2. 5-year investment payback period.展开更多
The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS ...The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS system, thermal power generation system and flue gas cooling and compression unit (CCU) are coupled and optimized, and the temperature and flow of the flue gas extraction are determined. The results indicate that the net plant efficiency of CLAS O2/CO2 power plant is 39.2%, which is only 3.54% lower than that of the conventional power plants without carbon capture. However, the O2/CO2 power plant based on cryogenic air separation technology brings 8% to 10% decrease in the net plant efficiency. By optimizations, the net plant efficiency increases by 1.65%. The energy consumption of the CCU accounts for 59.7% and the pump accounts for 27.1%. The oxygen concentration from the chemical looping air separation unit is 12.2%.展开更多
In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prom...In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prominent superoleophilicity and superhydrophobicity with a huge water contact angle about 154.39° and oil contact angle near 0° Moreover, the coated copper mesh showed high separation efficiency approximately 99.3%, and huge water flux about 9962.3 L·h^-1·m-2, which could be used to separate various organic solvents/ water mixtures. Furthermore, the coated copper mesh showed favorable stability that the separation efficiency remained above 90% after 10 separation cycles. Benefiting from the excellent photocatalytic degradation ability of tungsten trioxide, the coated copper mesh possessed the self-cleaning capacity. Therefore, the mesh contaminated with lubricating oil could regain superhydrophobic property, and this property of self-cleaning permitted that the fabricated copper mesh could be repeatedly used for oil and water separation.展开更多
To research a novel technology for dry coarse coal slime beneficiation and extend its application, active pulsing air separation technology was investigated by DEM-CFD coupling simulation approach. The results show th...To research a novel technology for dry coarse coal slime beneficiation and extend its application, active pulsing air separation technology was investigated by DEM-CFD coupling simulation approach. The results show that the ash content of feed is reduced by 10% 15% and the organic efficiency is up to 91.78% by using the active pulsing air separation technology. The gas solid flow in the active pulsing air classifier was simulated. Meanwhile, the characteristics of particle motion and the separation process of different particles were analyzed, and the mechanical structure of the classifier was also modified to achieve high separation efficiency. Therefore, a novel high-efficiency dry beneficiation technique was advanced for coarse coal slime.展开更多
The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which sh...The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which shows a remarkable variation of the unstable pulsing air flow field.CFD(computational fluid dynamics) was used to conduct the numerical simulation of the actual geometric model of the classifier.The inside velocity of the flowing fields was analyzed later.The simulation results indicate that the designed structure of the active pulsing air classifier provided a favorable environment for the separation of the particles with different physical characters by density.We shot the movement behaviors of the typical tracer grains in the active pulsing flow field using a high speed dynamic camera.The displacement and velocity curves of the particles in the continuous impulse periods were then analyzed.The experimental results indicate that the effective separation by density of the particles with the same settling velocity and different ranges of the density and particle size can be achieved in the active pulsing airflow field.The experimental results provide an agreement with the simulation results.展开更多
Toluene insoluble matter (TIM) in coker heavy gas oil (CHGO) from oil sands bitumen is harmful to the downstream hydrotreating, and it may be difficult to be removed by conventional filtration. In order to determine i...Toluene insoluble matter (TIM) in coker heavy gas oil (CHGO) from oil sands bitumen is harmful to the downstream hydrotreating, and it may be difficult to be removed by conventional filtration. In order to determine its origin, the TIM must first be separated from CHGO for characterization. Two techniques are described to accomplish this goal. In the ultra-centrifugation approach used in this work, CHGO is blended with a miscible liquid and centrifuged under 366000 G (gravity) force. Through this procedure toluene and hexane diluents yielded TIM contents of 24μg·g-1 and 88μg·g-1 respectively. In an alternative simplified procedure, the initial ultra-centrifugation step is omitted. Several different solvents are evaluated for use as diluents but, in each case, toluene is still used in the subsequent washing steps. TIM contents determined by this method range from 23 to about 200μg·g-1. The amount of TIM separated by means of this method depends primarily on the initial diluent used. Other conditions, such as diluent-oil ratio, water-oil ratio, mixing time, temperature and water pH value, are also studied.展开更多
In this work,a six-bed pressure swing adsorption(PSA)process was investigated to produce medical oxygen from air,which uses the combination of six-way rotating distribution valve and PSA and has the main advantage of ...In this work,a six-bed pressure swing adsorption(PSA)process was investigated to produce medical oxygen from air,which uses the combination of six-way rotating distribution valve and PSA and has the main advantage of effectively saving space compared to the traditional two-bed or four-bed PSA process and can obtain greater productivity.The mathematical model of adsorption beds was developed based on the separation mechanism and the interaction among different equipment.Moreover,a pilot-scale device has been constructed to verify the accuracy of mathematical model by experiment.The oxygen product conformed to the medical standard(>93%(vol))with a recovery of over 57%.Some related parameters were also discussed in detail,such as step time,ratio of length to the diameter,flow rate of product.展开更多
Recycling waste frying oils for the synthesis of flotation reagents presents a promising avenue for sustainable waste management.Moreover,it offers a cost-effective solution for crafting a specialized collector design...Recycling waste frying oils for the synthesis of flotation reagents presents a promising avenue for sustainable waste management.Moreover,it offers a cost-effective solution for crafting a specialized collector designed to efficiently remove carbonates and enhance phosphate enrichment in froth flotation processes.This study focuses on the synthesis of an anionic collector using the saponification reaction of a frying oil sample,subsequently applied to the flotation of calcite and dolomite.To elucidate the adsorption mechanisms of the frying oil collector(FrOC)and sodium oleate,a reference collector,on fluorapatite,calcite,dolomite,and quartz surfaces,comprehensive experiments were conducted,including zeta potential measurements and Fourier transform infrared spectroscopy.Results revealed diverse adsorption affinities of the molecules towards these minerals.To assess the practical performance of the collector,flotation tests were conducted using a natural phosphate ore mixture,employing a BoxBehnken experimental design.Notably,under optimized conditions(pH 9,1000 g/t of FrOC,3.5 min of conditioning,and 6 min of flotation),FrOC exhibited excellent performance,with calcite and dolomite recoveries exceeding 80%,while apatite recovery in the concentrate fraction remained below 10%.This work exemplifies both circular economy practices and the distinctive approach to sustainable mineral processing.展开更多
Approximate solutions for gas separation by hollow fiber membranes have been developedby several investigators.However,there are few reports of experimental verification of the models forhigh stage cut separations.In ...Approximate solutions for gas separation by hollow fiber membranes have been developedby several investigators.However,there are few reports of experimental verification of the models forhigh stage cut separations.In this work,an approximate mathematical model was developed and wasexperimentally verified for high stage cut air separation.Both countercurrent and cocurrent now pat-terns were used.In addition,the applicability of feed-inside mode for low stage cut air separation byhollow fiber membrane was examined.It was found that feed-inside mods was more advantageousthan feed-outside mode when used for the generation of oxygen-enriched air.展开更多
文摘This paper presents a superhydrophobic melamine(ME)sponge(ME-g-PLMA)prepared via high-energy radiation-induced in situ covalent grafting of long-alkyl-chain dodecyl methacrylate(LMA)onto an ME sponge for efficient oil–water separa-tion.The obtained ME-g-PLMA sponge had an excellent pore structure with superhydrophobic(water contact angle of 154°)and superoleophilic properties.It can absorb various types of oils up to 66–168 times its mass.The ME-g-PLMA sponge can continuously separate oil slicks in water by connecting a pump or separating oil underwater with a gravity-driven device.In addition,it maintained its highly hydrophobic properties even after long-term immersion in different corrosive solutions and repeated oil adsorption.The modified ME-g-PLMA sponge exhibited excellent separation properties and potential for oil spill cleanup.
基金Financial support from the Science Fund for Creative Research Groups of the National Science Foundation of China (22021005)the National Natural Science Foundation of China (21776032)the Innovation Team of Dalian University of Technology (DUT2017TB01)。
文摘Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of gravity.W-MEL membranes were grown on stainless steel (SS) meshes through in-situ hydrothermal growth method facilitated with (3-aminopropyl)triethoxysilane (APTES) modification of stainless steel meshes,which promote the heterogeneous nucleation and crystal growth of W-MEL zeolites onto the mesh surface.W-MEL membranes were grown on different mesh size supports to investigate the effect of mesh size on the separation performance of the membrane.The assynthesized W-MEL membrane supported on 500 mesh (25μm)(W-MEL-500) exhibit the hydrophilic nature with a water contact angle of 11.8°and delivers the best hexane/water mixture separation with a water flux and separation efficiency of 46247 L·m^(-2)·h^(-1)and 99.5%,respectively.The wettability of W-MEL membranes was manipulated from hydrophilic to hydrophobic nature by chemically modifying with the fluorine-free compounds (hexadecyltrimethoxysilane (HDTMS) and dodecyltrimethoxysilane(DDTMS)) to achieve efficient oil-permselective separation of heavy oils from water.Among the hydrophobically modified W-MEL membranes,W-MEL-500-HDTMS having a water contact angle of146.4°delivers the best separation performance for dichloromethane/water mixtures with a constant oil flux and separation efficiency of 61490 L·m^(-2)·h^(-1)and 99.2%,respectively along with the stability tested up to 20 cycles.Both W-MEL-500-HDTMS and W-MEL-500-DDTMS membranes also exhibit similar separation performances for the separation of heavy oil from sea water along with a 20-fold lower corrosion rate in comparison with the bare stainless-steel mesh,indicating their excellent stability in seawater.Compared to the reported zeolite membranes for oil/water separation,the as-synthesized and hydrophobically modified W-MEL membranes shows competitive separation performances in terms of flux and separation efficiency,demonstrating the good potentiality for oil/water separation.
基金the financial support from National Key Research & Development Program of China (2017B0602702)。
文摘In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modification with n-dodecyl mercaptan(DDT). This method provides a new strategy to fabricate superhydrophobic PU sponge with a water contact angle of 157° for absorbing oil with low cost and in large scale. It exhibits the strong absorption capacity and highly selective characteristic for various kinds of oils which can be recycled by simple squeezing. Besides, the as-prepared sponge can deal with the floating and underwater oils, indicating its application value in handling oil spills and domestic oily wastewater. The good self-cleaning ability shows the potential to clear the pollutants due to the ultralow adhesion to water. Especially, the most important point is that the superhydrophobic sponge can continuously and effectively separate the oil/water mixture against the condition of turbulent disturbance by using our designed device system, which exhibit its good superhydrophobicity, strong stability.Furthermore, the SS-PU still maintained stable absorption performance after 150 cycle tests without losing capacity obviously, showing excellent durability in long-term operation and significant potential as an efficient absorbent in large-scale dispose of oily water.
基金We gratefully acknowledge the financial support from National Key Research and Development Project,China(2019YFA0708700)the National Natural Science Foundation of China(52222403,52074333)the Innovation Fund Project for graduate students of China University of Petroleum(East China)(22CX04049A).
文摘The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative analysis of interactions in oil-water separation is rarely recognized.Herein,we constructed an adaptable wettability membrane with multiple polymer networks by polydopamine(PDA)and mussel-inspired amphiphilic polymer.Based on the Owens three-probe liquid method,the surface energy of the modified membrane was verified to meet the adaptive wettability conditions,with surface energies(γ-8)of 147.6 mJ m^(−2)(superhydrophilic/underwater superoleophobic)and 49.87 mJ m^(−2)(superhydrophobic/superoleophobic),respectively.The adhesion or repulsion of the membrane to the oil phase under different conditions during the separation process was quantified by the chemical probe AFM technique.In addition,the oil-water selective separation mechanism was further analyzed in a simplified membrane microchannel model.The results show that the different wetting produces capillary additional pressure in opposite directions,resulting in different energies to be overcome when the oil or water passes through the microchannels,thus achieving selective separation.
基金the financial support from the National Key R&D Program of China (no. 2018YFB1501602)Science Foundation of Shanxi Province, China (Grant no. 201901D111006ZD)+1 种基金Fund for Shanxi “1331 project”Shanxi Province Platform Base and Talent Special Fund (no. 201705D211023)。
文摘Industrial production and domestic discharge produce a large amount of oily wastewater, which seriously affects the stability of the ecological environment. Membrane separation technology provides another path to treating oily wastewater. And appropriate surface modification of the membrane helps to achieve high efficiency of treating oily wastewater. With green, economy and stability been more concerned.The focal research reports a completely biodegradable all cellulose composite filter paper(ACCFP) composed of Ⅰ-cellulose macrofibers and Ⅱ-cellulose matrix. It is a simple one-step impregnation method to adjust the surface microstructure of the pristine filter paper(PFP), and it does not involve with chemical reaction. The pre-wetted ACCFP consist of Ⅱ-cellulose hydrogel and Ⅰ-cellulose reinforcement in the process of oil-water separation. This layer of hydrogel is the fundamental to underwater superoleophobicity, which determines their eligibility for applications of efficient oil-water mixture or oil-in-water(oil/water) emulsion separation. The separation efficiency of oil-water mixture and oil/water emulsion exceed 95% and 99.9%, respectively. In addition, excellent mechanical properties of ACCFP in dry and wet conditions ensure its stability in service and prolong service life in applications. The focal study provides a new method for high-performance oil-water separation and it is more in line with sustainable chemistry.
文摘It is well known that gas oils from oilsands bitumen are difficult to hydrotreat. In order to develop the most appropriate flow sheet and operating conditions, a thorough knowledge of the molecular structure and behaviour of bitumen and its gas oil products is needed. In this work, the gas oil samples are fractionated in an attempt to isolate and identify the problematic molecular species for hydrotreating. It is found that the major nitrogen sources in coker gas oils are associated with relatively small pentane insoluble species and an even smaller, highly polar, hexane insoluble species. Structural information obtained for these fractions indicates that they are formed during the cracking of resin molecules. Nitrogen speciation shows that the pyrroles are the primary nitrogen type, with pyridines also being an important species. Both nitrogen species are undesirable in the hydrotreating process. Pyrroles in particular are subject to polymerisation, producing gums and sediments that foul filters and other equipment while pyridines can directly deactivate the hydrotreating catalyst.
基金Supported by the PetroChina Major Scientific and Technological Research Project (2021DJ1102)PetroChina Science and Technology Major Project (2022kt1001)。
文摘In order to understand the mechanism of air flooding shale oil, an online physical simulation method for enhanced shale oil recovery by air injection was established by integrating CT scanning and nuclear magnetic resonance(NMR). The development effect of shale oil by air flooding under different depletion pressures, the micro-production characteristics of pore throats with different sizes and the mechanism of shale oil recovery by air flooding were analyzed. The effects of air oxygen content, permeability, gas injection pressure, and fractures on the air flooding effect in shale and crude oil production in pores with different sizes were analyzed. The recovery of shale oil can be greatly improved by injecting air into the depleted shale reservoir, but the oil displacement efficiency and the production degree of different levels of pore throats vary with the injection timing. The higher the air oxygen content and the stronger the low-temperature oxidation, the higher the production degree of pores with different sizes and the higher the shale oil recovery. The higher the permeability and the better the pore throat connectivity, the stronger the fluid flow capacity and the higher the shale oil recovery. As the injection pressure increases, the lower limit of the production degree of pore throats decreases, but gas channeling may occur to cause a premature breakthrough;as a result, the recovery increases and then decreases. Fractures can effectively increase the contact area between gas and crude oil, and increase the air sweep coefficient and matrix oil drainage area by supplying oil to fractures through the matrix, which means that a proper fracturing before air injection can help to improve the oil displacement effect under a reasonable production pressure difference.
基金Supported by the Trans-century Training Programme Foundation for the Talents by the Ministry of Education of China (No.2002-48).
文摘Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., a porous ceramic membrane substrate, a polyvinylidene fluoride (PVDF) ultrafiltration sub-layer, and a polyamide/polyvinyl alcohol (PVA) composite thin top-layer. The PVDF polymer was east onto the tubular porous ceramic membranes with an immersion precipitation method, and the polyamide/PVA composite thin top-layer was fabricated with an inteffaeial polymerization method. The effects of the sub-layer composition and the recipe in the inteffaeial polymerization for fabricating the top-layer on the structure and performance of composite membranes were systematically investigated. The prepared composite membranes showed a good performance for treating the O/W microemulsions with a mean diameter of about 2.41μm. At the operating pressure of 0.4MPa, the hydraulic permeability remained steadily about 190L·m^-2·h^-1, the oil concentration in the permeate was less than 1.6mg·L^-1, and the oil rejection coefficient was always higher than 98.5% throughout the operation from the beginning.
基金Supported by the National Natural Science Foundation of China(21776319)
文摘Nowadays, oil spills have led to a serious environmental crisis of the world. To deal with this problem, inspired from super-hydrophobic lotus leaf, this study fabricated super-hydrophobic and super-lipophilic functionalized graphene oxide/polyurethane (FGP) sponge by a simple and inexpensive dip coating method. The resulting FGP sponge was characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy and water contact angle. The results expressed that FGP sponge exhibited a similar surface structure to that of a lotus leaf, and possessed the super-hydrophobic characteristic with the water contact angle (WAC) of 152°± 1 °. The absorption capacity and reusability were also investigated. It can be seen that, the FGP sponge can remove a wide range of oils and organic solvents from water with good absorption capacities (up to 35 times of its own mass). Significantly, after 10 cycles the absorption capacity of the oils and organic solvents was higher than 90°; for the reused FGP sponge, demonstrating the good reusability of the FGP sponge. Therefore, this study probably provided a simole way to remove the pollutions ofoil spills and toxic organism from water.
基金supported by the National Key Research and Development Program of China under the contract number of 2017YFB0308000Program of Innovation Academy for Green Manufacture,CAS(IAGM2020C04)+1 种基金the State Key Laboratory of Heavy Oil Processing(SKLOP201903001)Key Research and Development Program of Hebei Province,China(20374001D)。
文摘Discharging untreated oily wastewater into the environment disrupts the ecological balance,which is a global problem that requires urgent solutions.Superhydrophilic and superoleophilic fibrous medium(FM)effectively separated oil–water emulsion as it was hydrophobic underwater.But its separation efficiencies(SEs)first increased to 98.9%,then dropped to 97.6%in 10 min because of oil-fouling.To tackle this problem,FM deposited with 0%–10%silica nanoparticle(NPsFMs),then coated by fluorocarbon polymer(X-[CH_(2)CH_(2)O]nCH_(2)CH_(2)O-Y-NH-COOCH_(2)C4F9)(FCNPs FMs),was used to enhance its roughness and regulate its initial wettability to improve the anti-fouling property.FCFM and FCNPs FMs were hydrophobic and oleophobic in air and oleophobic underwater.Their water contact angles,oil contact angles and oil contact angles were 115.3°–121.1°,128.8°–136.5°,and 131.6°–136.7°,respectively,meeting the requirement of 90°–140°for coalescence separation.FCNPs FM-5 had the best separation performance with a constant value of 99.8%in 10 min,while that of FCNPs FM-10 slightly decreased to 99.5%.Theoretical released droplet(TRD)diameter,calculated by the square root of the product of pore radius and fiber diameter,was used for the evaluation of coalescence performance.Analyzed by two ideal models,TRD diameter and fiber diameter showed a parabola type relationship,proving that the separation efficiency was a collaborative work of wettability,pore size and fiber diameter.Also,it explained the SEs reduction from FCNPs FM-5 to FCNPs FM-10 was revelent to the three parameters.Moreover,FCNPsFMs effectively separated emulsions stabilized by cationic surfactant CTAB(SEs:97.3%–98.4%)and anionic surfactant SDBS(SEs:91.3%–93.4%).But they had an adverse effect on nonionic surfactant Tween-80 emulsion separation(SEs:94.0%–71.76%).Emulsions made by diverse oils can be effectively separated:octane(SEs:99.4%–100%),rapeseed oil(SEs:97.3%–98.8%),and diesel(SEs:95.2%–97.0%).These findings provide new insights for designing novel materials for oil–water separation by coalescence mechanism.
基金the National Natural Science Foundation of China (No. 50974119) for the financial support for this project
文摘The cyclonic-static microbubble flotation column has dual effects including the cyclonic separation and floatation separation with the characteristics of the small lower limit of the effective separation size, short separation time, large handling capacity, and low operation cost. It shows significant advantages in the oily wastewater treatment field, especially the polymer flooding oily wastewater treatment aspect. In this paper, the cyclonic separation function mechanism of the cyclonic-static microbubble flotation column was studied, the impact of the parameters including the feeding rate, aeration rate, circulating pressure, and underflow split ratio on the cyclonic separation efficiency was investigated, and the cyclonic separation efficiency model was established as well. In addition, by applying the Doppler Laser Velocimeter (LDV) and Fluent simulation software, the test and simulation to the single-phase flow velocity field of the cyclonic separation section of the cyclonic-static microbubble flotation column were carried out, and the velocity distribution rule of the cyclonic separation section was analyzed under the singlephase flow conditions.
文摘On the basis of the characteristics of a highly emulsified solid-liquid phase (fine particles, sticky consistency,black color, and low reuse ratio), waste rolling oily sludge has been a focal problem in the steel industry. In this article, a solid-liquid phase separation and resource recycling process was described, with pilot test results showing that flocculation-sedimentation is an effective pretreatment, and that the filtration-coagulationvacuum distillation process is simple and feasible with a 53.5% recovery rate for regenerated oil that is qualified for return to the roiling production line. Then,solid phase oil-sludge was extracted by solvents with a 77% metal resource recovery rate and a wide utilization range. Finally, according to the experimental results, a set of feasibility plans for a 50 t/a waste rolling oily sludge solid-liquid separation and resource recycle project was designed, with the expectation of 50% regenerated oil yield, 70% solid metal resource recovery, and a 2. 5-year investment payback period.
基金The National High Technology Research and Development Program of China(863 Program)(No.2012AA051801)the National Natural Science Foundation of China(No.51176033)
文摘The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS system, thermal power generation system and flue gas cooling and compression unit (CCU) are coupled and optimized, and the temperature and flow of the flue gas extraction are determined. The results indicate that the net plant efficiency of CLAS O2/CO2 power plant is 39.2%, which is only 3.54% lower than that of the conventional power plants without carbon capture. However, the O2/CO2 power plant based on cryogenic air separation technology brings 8% to 10% decrease in the net plant efficiency. By optimizations, the net plant efficiency increases by 1.65%. The energy consumption of the CCU accounts for 59.7% and the pump accounts for 27.1%. The oxygen concentration from the chemical looping air separation unit is 12.2%.
基金the National Natural Science Foundation of China(No.21776319 and No.21476269).
文摘In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prominent superoleophilicity and superhydrophobicity with a huge water contact angle about 154.39° and oil contact angle near 0° Moreover, the coated copper mesh showed high separation efficiency approximately 99.3%, and huge water flux about 9962.3 L·h^-1·m-2, which could be used to separate various organic solvents/ water mixtures. Furthermore, the coated copper mesh showed favorable stability that the separation efficiency remained above 90% after 10 separation cycles. Benefiting from the excellent photocatalytic degradation ability of tungsten trioxide, the coated copper mesh possessed the self-cleaning capacity. Therefore, the mesh contaminated with lubricating oil could regain superhydrophobic property, and this property of self-cleaning permitted that the fabricated copper mesh could be repeatedly used for oil and water separation.
基金Projects(51221462,51134022,51074156)supported by the National Natural Science Foundation of ChinaProject(2012CB214904)supported by the National Basic Research Program of ChinaProject(20120095130001)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘To research a novel technology for dry coarse coal slime beneficiation and extend its application, active pulsing air separation technology was investigated by DEM-CFD coupling simulation approach. The results show that the ash content of feed is reduced by 10% 15% and the organic efficiency is up to 91.78% by using the active pulsing air separation technology. The gas solid flow in the active pulsing air classifier was simulated. Meanwhile, the characteristics of particle motion and the separation process of different particles were analyzed, and the mechanical structure of the classifier was also modified to achieve high separation efficiency. Therefore, a novel high-efficiency dry beneficiation technique was advanced for coarse coal slime.
基金the financial support provided by the National Natural Science Foundation of China (No.51074156)the Natural Science Foundation of China for InnovativeResearch Group (No. 50921002)+1 种基金the Natural Science Foundation of Jiangsu Province of China (No. BK2010002)the Fundamental Research Funds for the Central Universities (No. 2010ZDP01A06)
文摘The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which shows a remarkable variation of the unstable pulsing air flow field.CFD(computational fluid dynamics) was used to conduct the numerical simulation of the actual geometric model of the classifier.The inside velocity of the flowing fields was analyzed later.The simulation results indicate that the designed structure of the active pulsing air classifier provided a favorable environment for the separation of the particles with different physical characters by density.We shot the movement behaviors of the typical tracer grains in the active pulsing flow field using a high speed dynamic camera.The displacement and velocity curves of the particles in the continuous impulse periods were then analyzed.The experimental results indicate that the effective separation by density of the particles with the same settling velocity and different ranges of the density and particle size can be achieved in the active pulsing airflow field.The experimental results provide an agreement with the simulation results.
基金CHGO sample was provided by Synrude Canada Ltd.Plant.
文摘Toluene insoluble matter (TIM) in coker heavy gas oil (CHGO) from oil sands bitumen is harmful to the downstream hydrotreating, and it may be difficult to be removed by conventional filtration. In order to determine its origin, the TIM must first be separated from CHGO for characterization. Two techniques are described to accomplish this goal. In the ultra-centrifugation approach used in this work, CHGO is blended with a miscible liquid and centrifuged under 366000 G (gravity) force. Through this procedure toluene and hexane diluents yielded TIM contents of 24μg·g-1 and 88μg·g-1 respectively. In an alternative simplified procedure, the initial ultra-centrifugation step is omitted. Several different solvents are evaluated for use as diluents but, in each case, toluene is still used in the subsequent washing steps. TIM contents determined by this method range from 23 to about 200μg·g-1. The amount of TIM separated by means of this method depends primarily on the initial diluent used. Other conditions, such as diluent-oil ratio, water-oil ratio, mixing time, temperature and water pH value, are also studied.
基金supported by Major military logistics research pro-jects(AWS13Z006)National Key Research and Development program of China(2017YFC0806404).
文摘In this work,a six-bed pressure swing adsorption(PSA)process was investigated to produce medical oxygen from air,which uses the combination of six-way rotating distribution valve and PSA and has the main advantage of effectively saving space compared to the traditional two-bed or four-bed PSA process and can obtain greater productivity.The mathematical model of adsorption beds was developed based on the separation mechanism and the interaction among different equipment.Moreover,a pilot-scale device has been constructed to verify the accuracy of mathematical model by experiment.The oxygen product conformed to the medical standard(>93%(vol))with a recovery of over 57%.Some related parameters were also discussed in detail,such as step time,ratio of length to the diameter,flow rate of product.
基金financially supported through the research program between OCP Group and UM6P under the specific agreement AS34-flotation project
文摘Recycling waste frying oils for the synthesis of flotation reagents presents a promising avenue for sustainable waste management.Moreover,it offers a cost-effective solution for crafting a specialized collector designed to efficiently remove carbonates and enhance phosphate enrichment in froth flotation processes.This study focuses on the synthesis of an anionic collector using the saponification reaction of a frying oil sample,subsequently applied to the flotation of calcite and dolomite.To elucidate the adsorption mechanisms of the frying oil collector(FrOC)and sodium oleate,a reference collector,on fluorapatite,calcite,dolomite,and quartz surfaces,comprehensive experiments were conducted,including zeta potential measurements and Fourier transform infrared spectroscopy.Results revealed diverse adsorption affinities of the molecules towards these minerals.To assess the practical performance of the collector,flotation tests were conducted using a natural phosphate ore mixture,employing a BoxBehnken experimental design.Notably,under optimized conditions(pH 9,1000 g/t of FrOC,3.5 min of conditioning,and 6 min of flotation),FrOC exhibited excellent performance,with calcite and dolomite recoveries exceeding 80%,while apatite recovery in the concentrate fraction remained below 10%.This work exemplifies both circular economy practices and the distinctive approach to sustainable mineral processing.
文摘Approximate solutions for gas separation by hollow fiber membranes have been developedby several investigators.However,there are few reports of experimental verification of the models forhigh stage cut separations.In this work,an approximate mathematical model was developed and wasexperimentally verified for high stage cut air separation.Both countercurrent and cocurrent now pat-terns were used.In addition,the applicability of feed-inside mode for low stage cut air separation byhollow fiber membrane was examined.It was found that feed-inside mods was more advantageousthan feed-outside mode when used for the generation of oxygen-enriched air.