期刊文献+
共找到3,245篇文章
< 1 2 163 >
每页显示 20 50 100
A novel nano-grade organosilicon polymer:Improving airtightness of compressed air energy storage in hard rock formations
1
作者 Zhuyan Zheng Guibin Wang +7 位作者 Chunhe Yang Hongling Ma Liming Yin Youqiang Liao Kai Zhao Zhen Zeng Hang Li Yue Han 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期305-321,共17页
Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a ... Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a sealant,coupled with an air seepage evaluation model that incorporates Knudsen diffusion.Moreover,the initial coating application methods were outlined,and the advantages of using NOSP compared to other sealing materials,particularly regarding cost and construction techniques,were also examined and discussed.Experimental results indicated a significant reduction in permeability of rock specimens coated with a 7–10μm thick NOSP layer.Specifically,under a 0.5 MPa pulse pressure,the permeability decreased to less than 1 n D,and under a 4 MPa pulse pressure,it ranged between4.5×10^(-6)–5.5×10^(-6)m D,marking a 75%–80%decrease in granite permeability.The sealing efficacy of NOSP surpasses concrete and is comparable to rubber materials.The optimal viscosity for application lies between 95 and 105 KU,and the coating thickness should ideally range from 7 to 10μm,applied to substrates with less than 3%porosity.This study provides new insights into air transport and sealing mechanisms at the pore level,proposing NOSP as a cost-effective and simplified solution for CAES applications. 展开更多
关键词 Compressed air energy storage LINING Permeability Transient pulse method Hard rock cavern Nano-grade organosilicon polymer coating
下载PDF
Air tightness of compressed air storage energy caverns with polymer sealing layer subjected to various air pressures
2
作者 Shikang Qin Caichu Xia Shuwei Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期2105-2116,共12页
During the operation of compressed air storage energy system,the rapid change of air pressure in a cavern will cause drastic changes in air density and permeability coefficient of sealing layer.To calculate and proper... During the operation of compressed air storage energy system,the rapid change of air pressure in a cavern will cause drastic changes in air density and permeability coefficient of sealing layer.To calculate and properly evaluate air tightness of polymer sealing caverns,the air-pressure-related air density and permeability must be considered.In this context,the high-pressure air penetration in the polymer sealing layer is studied in consideration of thermodynamic change of the cavern structure during the system operation.The air tightness model of compressed air storage energy caverns is then established.In the model,the permeability coefficient and air density of sealing layer vary with air pressure,and the effectiveness of the model is verified by field data in two test caverns.Finally,a compressed air storage energy cavern is taken as an example to understand the air tightness.The air leakage rate in the caverns is larger than that using air-pressure-independent permeability coefficient and air density,which is constant and small in the previous leakage rate calculation.Under the operating pressure of 4.5-10 MPa,the daily air leakage in the compressed air storage energy cavern of Yungang Mine with high polymer butyl rubber as the sealing material is 0.62%,which can meet the sealing requirements of compressed air storage energy caverns.The air tightness of the polymer sealing cavern is mainly affected by the cavern operating pressure,injected air temperature,cavern radius,and sealing layer thickness.The cavern air leakage rate will be decreased to reduce the cavern operating pressure the injection air temperature,or the cavern radius and sealing layer thickness will be increased. 展开更多
关键词 Compressed air storage energy Polymer sealing layer air tightness Permeability coefficient air density
下载PDF
Research on Operation Optimization of Heating System Based on Electric Storage Coupled Solar Energy and Air Source Heat Pump
3
作者 Jingxiao Han Chuanzhao Zhang +5 位作者 LuWang ZengjunChang Qing Zhao Ying Shi JiaruiWu Xiangfei Kong 《Energy Engineering》 EI 2023年第9期1991-2011,共21页
For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving e... For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases. 展开更多
关键词 Electric heat storage solar energy air source heat pump multi-objective optimization method LOCH
下载PDF
Design and Development of Wind-Solar Hybrid Power System with Compressed Air Energy Storage for Voltage and Frequency Regulations
4
作者 Banet Masenga Jean Byiringiro +3 位作者 Charles Kagiri Edwell Tafara Daniel Ngoma Gnoumou Aristid 《Journal of Power and Energy Engineering》 2023年第2期1-24,共24页
The intermittent nature of wind and solar photovoltaic energy systems leads to the fluctuation of power generated due to the fact that the power output is highly dependent upon local weather conditions, which results ... The intermittent nature of wind and solar photovoltaic energy systems leads to the fluctuation of power generated due to the fact that the power output is highly dependent upon local weather conditions, which results to the load shading issue that led to the voltage and frequency instability. In additional to that, the high proportions of erratic renewable energy sources can lead to erratic frequency changes which affect the grid stability. In order to reduce this effect, the energy storage system is commonly used in most wind-solar energy systems to balance the voltage and frequency instability during load variations. One of the innovative energy storage systems is the compressed air energy storage system (CAES) for wind and solar hybrid energy system and this technology is the key focus in this research study. The aim of this research was to examine the system configuration of the CAES system through modelling and experimental approach with PID controller design for regulating the voltage and frequency under different load conditions. The essential elements and the entire system have been presented in this work as thorough modelling in the MATLAB/Simulink environment for different load conditions. The developed model was tested through an experimental workbench using the developed prototype of the compressed air storage in the Siemens Lab at DeKUT and explored the consequence of the working parameters on the system proficiency and the model accuracy. The performance of the system for the developed prototype of CAES system was validated using results from an experimental workbench with MATLAB/Simulink R2022b simulation. The modeling and experimental results, shows that the frequency fluctuation and voltage drop of the developed CAES system during load variations was governed by the I/P converter using a PID_Compact controller programed in the TIA Portal V17 software and downloaded into PLC S7 1200. Based on these results, the model can be applied as a basis for the performance assessment of the compressed air energy storage system so as to be included in current technology of wind and solar hybrid energy systems. 展开更多
关键词 VOLTAGE FREQUENCY Compressed air Energy storage Load Variations PID Control I/P Converter Valve
下载PDF
Determinations of Air Tightness of Covered Slurry Storage Tanks Using Tracer Gas Technique 被引量:1
5
作者 G. Gustafsson 《Journal of Agricultural Science and Technology(B)》 2011年第8期1146-1151,共6页
关键词 示踪气体技术 空气交换率 储存 密封性 测定 气体浓度 红外光谱仪 混凝土屋面
下载PDF
Research on Storage Capacity of Compressed Air Pumped Hydro Energy Storage Equipment 被引量:4
6
作者 Jingtian Bi Tong Jiang +1 位作者 Weili Chen Xian Ma 《Energy and Power Engineering》 2013年第4期26-30,共5页
Compressed air pumped hydro energy storage equipment combines compressed air energy storage technology and pumped storage technology. The water is pumped to a vessel to compress air for energy storage, and the compres... Compressed air pumped hydro energy storage equipment combines compressed air energy storage technology and pumped storage technology. The water is pumped to a vessel to compress air for energy storage, and the compressed air expanses pushing water to drive the hydro turbine for power generation. The novel storage equipment saves natural gas resources, reduces carbon emission, and improves the controllability and reliability. The principle of compressed air pumped hydro energy storage is introduced and its mathematical model is built. The storage and generation process of the novel equipment is analyzed using the model. The calculation formula of the storage power is deduced in theory in different situations of isothermal and adiabatic compression. The optimal storage scheme is given when the capacity and withstand pressure of the vessel is definitive, and the max available capacity and the equipment utilization efficiency evaluation of the scheme is given. 展开更多
关键词 Power storage Compressed air Energy storage Hydraulic EQUIPMENT Optimal Operation ISOTHERMAL PROCESS ADIABATIC PROCESS EQUIPMENT UTILIZATION Efficiency
下载PDF
Performance Analysis of Constant-Pressure Pumped Hydro Combined with Compressed Air Energy Storage System Considering Off-Design Model of Compressor 被引量:3
7
作者 Xin He Huanran Wang +1 位作者 Feiyue Tao Gangqiang Ge 《Energy and Power Engineering》 2021年第4期11-18,共8页
<div style="text-align:justify;"> With the wide application of renewable energy, energy storage technology has become a research hotspot. In order to overcome the shortcomings of energy loss caused by ... <div style="text-align:justify;"> With the wide application of renewable energy, energy storage technology has become a research hotspot. In order to overcome the shortcomings of energy loss caused by compression heating in compressed air energy storage technology, a novel constant-pressure pumped hydro combined with compressed air energy storage system was proposed. To deepen the understanding of the system and make the analysis closer to reality, this paper adopted an off-design model of the compressor to calculate and analyze the effect of key parameters on system thermodynamics performance. In addition, the results of this paper were compared with previous research results, and it was found that the current efficiency considering the off-design model of compressor was generally 2% - 5% higher than the previous efficiency. With increased preset pressure or with decreased terminal pressure, both the previous efficiency and current efficiency of the system increased. The exergy destruction coefficient of the throttle valve reached 4%. System efficiency was more sensitive to changes in water pump efficiency and hydroturbine efficiency. </div> 展开更多
关键词 Energy storage Compressed air Energy storage Off-Design Model
下载PDF
Design issues for compressed air energy storage in sealed underground cavities 被引量:7
8
作者 P.Perazzelli G.Anagnostou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第3期314-328,共15页
Compressed air energy storage (CAES) systems represent a new technology for storing very large amount of energy. A peculiarity of the systems is that gas must be stored under a high pressure (p - 10-30 MPa). A lin... Compressed air energy storage (CAES) systems represent a new technology for storing very large amount of energy. A peculiarity of the systems is that gas must be stored under a high pressure (p - 10-30 MPa). A lined rock cavern (LRC) in the form of a tunnel or shaft can be used within this pressure range. The rock mass surrounding the opening resists the internal pressure and the lining ensures gas tightness. The present paper investigates the key aspects of technical feasibility of shallow LRC tunnels or shafts under a wide range of geotechnical conditions. Results show that the safety with respect to uplift failure of the rock mass is a necessary but not a sufficient condition for assessing feasibility. The deformation of the rock mass should also be kept sufficiently small to preserve the integrity of the lining and, especially, its tightness. If the rock is not sufficiently stiff, buckling or fatigue failure of the steel lining becomes more decisive when evaluating the feasible operating air pressure. The design of the concrete plug that seals the compressed air stored in the container is another demanding task. Numerical analyses indicate that in most cases, the stability of the rock mass under the plug loading is not a decisive factor for plug design. 展开更多
关键词 Compressed air energy storage (CAES)TunnelsLiningConcrete plugFeasibility assessment
下载PDF
A power plant for integrated waste energy recovery from liquid air energy storage and liquefied natural gas 被引量:3
9
作者 Tongtong Zhang Xiaohui She Yulong Ding 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第6期242-257,共16页
Liquefied natural gas(LNG)is regarded as one of the cleanest fossil fuel and has experienced significant developments in recent years.The liquefaction process of natural gas is energy-intensive,while the regasificatio... Liquefied natural gas(LNG)is regarded as one of the cleanest fossil fuel and has experienced significant developments in recent years.The liquefaction process of natural gas is energy-intensive,while the regasification of LNG gives out a huge amount of waste energy since plenty of high grade cold energy(-160℃)from LNG is released to sea water directly in most cases,and also sometimes LNG is burned for regasification.On the other hand,liquid air energy storage(LAES)is an emerging energy storage technology for applications such as peak load shifting of power grids,which generates 30%-40%of compression heat(-200℃).Such heat could lead to energy waste if not recovered and used.The recovery of the compression heat is technically feasible but requires additional capital investment,which may not always be economically attractive.Therefore,we propose a power plant for recovering the waste cryogenic energy from LNG regasification and compression heat from the LAES.The challenge for such a power plant is the wide working temperature range between the low-temperature exergy source(-160℃)and heat source(-200℃).Nitrogen and argon are proposed as the working fluids to address the challenge.Thermodynamic analyses are carried out and the results show that the power plant could achieve a thermal efficiency of 27%and 19%and an exergy efficiency of 40%and 28%for nitrogen and argon,respectively.Here,with the nitrogen as working fluid undergoes a complete Brayton Cycle,while the argon based power plant goes through a combined Brayton and Rankine Cycle.Besides,the economic analysis shows that the payback period of this proposed system is only 2.2 years,utilizing the excess heat from a 5 MW/40 MWh LAES system.The findings suggest that the waste energy based power plant could be co-located with the LNG terminal and LAES plant,providing additional power output and reducing energy waste. 展开更多
关键词 Waste energy recovery Power plant Liquid air energy storage Liquefied natural gas INTEGRATION
下载PDF
A PROSPECTIVE HYDROGEN STORAGE ALLOY PAIR FOR BUS AIR CONDITIONERS 被引量:1
10
作者 Wang Xinhua and Chen Changpin Department of Materials Science and Engineering,Zhejiang University, Hangzhou 310027, P. R. China 《中国有色金属学会会刊:英文版》 CSCD 1998年第1期57-60,共4页
APROSPECTIVEHYDROGENSTORAGEALLOYPAIRFORBUSAIRCONDITIONERS①WangXinhuaandChenChangpinDepartmentofMaterialsScie... APROSPECTIVEHYDROGENSTORAGEALLOYPAIRFORBUSAIRCONDITIONERS①WangXinhuaandChenChangpinDepartmentofMaterialsScienceandEnginering,... 展开更多
关键词 hydride HYDROGEN storage ALLOY BUS heat pump air CONDITIONER
下载PDF
Operating performance of novel reverse-cycle defrosting method based on thermal energy storage for air source heat pump 被引量:7
11
作者 董建锴 姜益强 +1 位作者 姚杨 张雪丹 《Journal of Central South University》 SCIE EI CAS 2011年第6期2163-2169,共7页
To solve the fundamental problem of insufficient heat available during defrosting while ensuring the efficient and safe system operation for air-source heat pumps (ASHPs). A novel reverse-cycle defrosting (NRCD) metho... To solve the fundamental problem of insufficient heat available during defrosting while ensuring the efficient and safe system operation for air-source heat pumps (ASHPs). A novel reverse-cycle defrosting (NRCD) method based on thermal energy storage to eliminate frost off the outdoor coil surface was developed. Comparative experiments using both the stand reverse cycle defrosting (SRCD) method and the NRCD method were carried out on an experimental ASHP unit with a nominal 2.5 kW heating capacity. The results indicate that during defrosting operation, using the NRCD method improves discharge and suction pressures by 0.24 MPa and 0.19 MPa, respectively, shortens defrosting duration by 60%, and reduces the defrosting energy consumption by 48.1% in the experimental environment, compared with those by the use of SRCD method. Therefore, using the NRCD method can shorten the defrosting duration, improve the indoor thermal comfort, and reduce the defrosting energy consumption in defrosting. 展开更多
关键词 逆循环除霜 除霜方法 空气源热泵 热能储存 经营业绩 对比实验 持续时间 能源消耗
下载PDF
Air pressure law of a reservoir constructed in karst sinkholes
12
作者 YU Bo TAI Shengping +4 位作者 ZHENG Kexun CHEN Shiwan HAN Xiao WANG Senlin ZUO Shuangying 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1048-1057,共10页
Karst sinkholes with natural negative landform provide favorable conditions for the pumped storage reservoir construction for less excavation work.However,the construction of the reservoir would plug the natural karst... Karst sinkholes with natural negative landform provide favorable conditions for the pumped storage reservoir construction for less excavation work.However,the construction of the reservoir would plug the natural karst channels for water and air,which would cause remarkable air pressure in karst channels when the groundwater level fluctuates.A large laboratory simulation test was carried out to study the air pressure variation of a reservoir built on the karst sinkhole.The air pressure in the karst channel and inside the model was monitored during the groundwater rising and falling process.Result showed that the variation of air pressure in the karst channel and the surrounding rock exhibited a high degree of similarity.The air pressure increased rapidly at the initial stage of water level rising,followed by a slight decrease,then the air pressure increased sharply when the water level approached the top of the karst cave.The initial peak of air pressure and the final peak of air pressure were defined,and both air pressure peaks were linearly increasing with the water level rising rate.The negative air pressure was also analyzed during the drainage process,which was linearly correlated with the water level falling rate.The causes of air pressure variation in karst channels of a pumped storage reservoir built on the karst sinkhole were discussed.The initial rapid increase,then slight decrease and final sudden increase of air pressure were controlled by the combined effects of air compression in karst channel and air seepage into the surrounding rock.For the drainage process,the instant negative air pressure and gradual recovering of air pressure were controlled by the combined effects of negative air pressure induced by water level falling and air supply from surrounding rock.This work could provide valuable reference for the reservoir construction in karst area. 展开更多
关键词 Simulation test Karst sinkhole Pumped storage reservoir air pressure Flow rate
下载PDF
Thermal properties in phase change wallboard room based on air conditioning cold storage
13
作者 陈其针 刘鑫 +1 位作者 牛润萍 王琳 《Journal of Central South University》 SCIE EI CAS 2009年第S1期193-196,共4页
By comparing the thermal performance parameters of an ordinary wall room with a phase change wall (PCW) room,the effect of phase change wallboard on the fluctuation of temperature in air-conditioning room in summer wa... By comparing the thermal performance parameters of an ordinary wall room with a phase change wall (PCW) room,the effect of phase change wallboard on the fluctuation of temperature in air-conditioning room in summer was studied. And PCW room and an ordinary wall room,which are cooled by air-conditioner,were built up. Differential scanning calorimetry (DSC) was used to test the temperature field and heat flow fluctuation in these rooms. Through analyzing the data tested,it is found that the mean temperature of PCW is lower than that of ordinary wall room by 1-2 ℃,and PCW can lower the heat flow by 4.6 W/m2. Combining phase change material to building envelope can lower the indoor temperature,make the room thermal comfortable,and cut down the turn-on-and-off frequency of air-conditioner,the primary investment and operating costs. It alleviates urgent need of the electric power. Building envelope which contains phase change wallboard can improve the indoor thermal environment,and decrease energy consumption in buildings. Phase change wallboard can make impressive effect on energy efficiency of buildings. 展开更多
关键词 PHASE CHANGE energy storage PHASE CHANGE WALLBOARD room INDOOR air temperature COOL storage
下载PDF
Enrichment model and major controlling factors of below-source tight oil in Lower Cretaceous Fuyu reservoirs in northern Songliao Basin,NE China
14
作者 WANG Xiaojun BAI Xuefeng +9 位作者 LI Junhui JIN Zhijun WANG Guiwen CHEN Fangju ZHENG Qiang HOU Yanping YANG Qingjie LI Jie LI Junwen CAI Yu 《Petroleum Exploration and Development》 SCIE 2024年第2期279-291,共13页
Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics... Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future. 展开更多
关键词 northern Songliao Basin Cretaceous Quantou Formation Qingshankou Formation upper generation and lower storage Fuyu reservoir tight oil main control factor enrichment model
下载PDF
Performance Evaluation of Compressed Air Energy Storage Using TRNSYS
15
作者 R.Velraj V.Gayathri A.Thenmozhi 《Journal of Electronic Science and Technology》 CAS CSCD 2015年第4期361-366,共6页
The appreciable economic growth in some of the developing countries like India in the recent years, towards providing energy security causes large environmental impact. Renewable Energy (RE) is being seen as one of ... The appreciable economic growth in some of the developing countries like India in the recent years, towards providing energy security causes large environmental impact. Renewable Energy (RE) is being seen as one of the important means to meet the growing power needs of the economy while enhancing energy security and providing opportunities for mitigating greenhouse gas emissions. However, RE sources are highly intermittent in nature. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. Hence at this juncture, it is necessary to explore the benefits of suitable Energy storage technologies. Compressed air energy storage (CAES) is a commercial, utility-scale technology that provides long-duration energy storage with fast ramp rates and good part-load operation. It is a promising storage technology for balancing the large-scale penetration of renewable energies, such as wind and solar power, into electric grids. Considering the potential of CAES storage, the present work, a thermodynamic model is developed with suitable assumptions and the simulation analysis is performed using transient system simulation (TRNSYS) v17 software. The system performanee is compared by considering the recovery during the heat of compression using a thermal storage system and without considering the heat recovery. The overall turnaround efficiency of the system without considering the thermal energy storage (TES) system is 57 % and with TES system the efficiency is increased to 70%. 展开更多
关键词 Compressed air energy storage solarcollector thermal energy storage.
下载PDF
Research on New Compressed Air Energy Storage Technology
16
作者 Xian Ma Jingtian Bi +2 位作者 Weili Chen Zhisen Li Tong Jiang 《Energy and Power Engineering》 2013年第4期22-25,共4页
In recent years, wind power generation and photovoltaic power generation have been developing rapidly, and the installed capacity of the new resources generation has been keeping a fast growth every year. But with the... In recent years, wind power generation and photovoltaic power generation have been developing rapidly, and the installed capacity of the new resources generation has been keeping a fast growth every year. But with the incorporation into the grid, the new resources generation that has the properties such as randomness and volatility causes certain risks to the power grid, which results in the falling of the incorporation proportion instead of rising. This paper describes the current status and development problems of the new energy in China, and gives a brief introduction of characteristics of various energy storage technologies. This paper focuses on the analysis of the compressed air energy storage technology in recent years and new developments and the latest technology at home and abroad, additionally, the paper introduces a new concept of the compressed air energy storage system. 展开更多
关键词 NEW ENERGY WIND POWER POWER storage Technology Compressed air ENERGY storage
下载PDF
An Experimental Study on the Performance of Storage Pulverizing System after Renovation of Importing Hot Air
17
作者 Guoqing Han Hongqi Wei +1 位作者 Chang-zheng He Ying-hui Li 《Energy and Power Engineering》 2013年第4期330-336,共7页
A thermal power plant of Sinopec has 9 boilers, which generally have problems of high exhaust gas temperature and high flying ash carbon content. In order to improve the adaptability of coals, the stability of coal po... A thermal power plant of Sinopec has 9 boilers, which generally have problems of high exhaust gas temperature and high flying ash carbon content. In order to improve the adaptability of coals, the stability of coal powder ignition, the burn-off rate of pulverized coals and the boiler efficiency, a series of renovation projects about importing hot air into mill exhauster are proposed. For the sake of verifying the renovation effects, an efficiency performance test is conducted on the renovated #5 boiler. The test result shows that the boiler heat efficiency has improved by 0.4% and it operates more safely and reliably after the renovation. At last, this paper recommends an optimized operation mode. 展开更多
关键词 storage Pulverizing System Importing HOT air RENOVATION PERFORMANCE Test Operation Optimization
下载PDF
Energy Storage System for Solar Thermal Air Conditioning Combined with Ejector Cooling System
18
作者 Sarayooth Vaivudh 《Journal of Energy and Power Engineering》 2015年第2期179-184,共6页
关键词 太阳能空调系统 冷却系统 储能系统 光热 热水温度 存储系统 太阳热能 能量源
下载PDF
Looping of Hybrid PV/Wind Turbine Power Plants by a Compressed Air Storage System and Creation of Artificial Wind to Ensure the Permanent Availability of Energy in the Tropical Zones
19
作者 Bello Pierre Ngoussandou Hamandjoda Oumarou Noel Djongyang 《Journal of Energy and Power Engineering》 2018年第2期57-65,共9页
关键词 存储系统 压缩空气 发电厂 精力 可获得性 热带地区 人工 汽轮机
下载PDF
Research on the Phase Change Solar Energy Fresh Air Thermal Storage System
20
作者 Guohui Feng Lei Zhao +1 位作者 Yingchao Fei Kailiang Huang 《Journal of Energy and Power Engineering》 2014年第2期232-236,共5页
关键词 太阳能收集器 相变材料 空气清新 蓄冷系统 能源可持续发展 非稳态传热 Fluent 新风系统
下载PDF
上一页 1 2 163 下一页 到第
使用帮助 返回顶部