One of the new methods for ensuring that the battery in a thermal energy storage system is kept at the proper temperature is the heat pipe-based ThermalManagement System(TMS).In this study,the improvement of cooling p...One of the new methods for ensuring that the battery in a thermal energy storage system is kept at the proper temperature is the heat pipe-based ThermalManagement System(TMS).In this study,the improvement of cooling performance of a heat pipe based TMS is examined through the variation of condenser section length of heat pipes in an array.The TMSs with an array of heat pipes with different condenser section lengths are considered.The system performances are evaluated using a validated numerical method.The results show that a heat pipebased TMS provides the best cooling performance when a wavy-like variation is employed and when the condenser section length of the last set of the heat pipe in the array is greater than that of the penultimate set.The maximum cell temperature and the maximum temperature difference within the cell of this TMS are decreased by 4.2 K and 1.1 K,respectively,when compared to the typical heat pipe based TMS with zero variation in its condenser section length.Conclusively,the strategy offers an improvement in the thermal uniformity for all the TMS cases.展开更多
The choked back pressure characteristic of the steam turbine unit with air cooled condenser is very different with the unit with wet cooling technology, and the understanding of the choked back pressure performance ch...The choked back pressure characteristic of the steam turbine unit with air cooled condenser is very different with the unit with wet cooling technology, and the understanding of the choked back pressure performance change with operation load is important to guide the economic operation of the unit. One simplified Variable Operation Condition Analysis Method was put forward for calculation of the unit output-turbine back pressure characteristics. Based on this method, the choked back pressure for each operation load can be determined. An example was given for a super-critical, regenerative single-shaft, 2-casing with 2-exhaust steam turbine generation unit with air cooled condenser. The calculation result was provided and compared with the result of the unit with wet cooling technology.展开更多
The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit ...The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit is about 1 kW, and the work refrigerant is R22/R407C/R410A/CO2. The MATLAB/SIMULINK software was employed to build the simulation model. The thermodynamic simulation model is significant for the optimization of parameters of the unit, such as condensation and evaporation temperature and mass flow of the sanitary hot water and size of hot water storage tank. The COP of the CCP of R410A system is about 3% - 5% higher than the CCP of the R22 system, while CCP of the R407C system is a little lower than the CCP of R22 system. And the CCP of CO2 trans-critical system has advantage in the hot supply mode. The simulation method provided a theoretical reference for developing the production of CCP with substitute refrigerant R407C/R410A/CO2.展开更多
The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV...The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV experiments are carried out and recirculation ratio of each condition is calculated. Results show that the thermal flow field of the cooling tower has great influence on the recirculation under the cooling tower. Ameliorating the thermal flow field of the cooling tower can reduce the recirculation under the cooling tower and improve the efficiency of air-cooled condenser also.展开更多
We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 104...We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 1045 mm. We applied a new analysis method for the steam state equation to analyze the molar quantity change in steam over the course of the experiment and determined the transient steam variation. We also investigated the influence of flow rates and temperatures ofcooling water on the efficiency ofsteam condensation. Our experimental results show that appropriate increasing of the cooling water flow rate can significantly accelerate the steam condensation. We achieved a rapid increase in the total volumetric heat transfer coefficient by increasing the flow rate of cooling water, which indicated a higher thermal convection between the steam and the cooling water with higher flow rates. We found that the temperature ofcooling water did not play an important role on steam condensation. This method was confirmed to be effective for rapid recovering ofsteam.展开更多
The air conditioning system in the Umm Al-Qura University (Albdiya Campus) was conceived to be a district cooling by a remote chilled water plant. Recently, there are two chilled water plants in the university install...The air conditioning system in the Umm Al-Qura University (Albdiya Campus) was conceived to be a district cooling by a remote chilled water plant. Recently, there are two chilled water plants in the university installed strategically to provide chilled water to all the academic and administrative buildings of the university through distribution network with total capacity approximately of 12,000 tons of refrigeration. The plants were built based on cooling towers with open water cycle as heat rejection system. Water treatment chemicals has been used to protect the cooling systems from corrosion, scaling and microbiological fouling accompanied with dissolved and suspended water impurities. Different methods are being used to determine and control the treatment chemical concentrations and system performance indicators. Traditional chemical controller has drawback of indirect measurements and set points. The purpose of this paper is to present a solution to overcome the problems of traditional and conventional chemical treatment and control sys-tems. Central cooling plant number (1) assigned to perform experimental setup using new chemical treatment technology. Advanced automatic chemical treatment controller installed on condensers (1, 2 and 3), and certain key performance indicators were selected and monitored such as chemical and water consumption, power, energy saving, and maintaining system integrity and efficiency. Satisfactory results were obtained in terms of performance and cost of operation.展开更多
This paper established an on-line monitoring model for fouling resistance of cooling water based on heat transfer theory,which was mainly applied to the fouling resistance test for condenser of chiller in operation,an...This paper established an on-line monitoring model for fouling resistance of cooling water based on heat transfer theory,which was mainly applied to the fouling resistance test for condenser of chiller in operation,and the test requirements were presented.It proves that the load ratio of chiller has big influence on the test result,and the best load ratio for test is the range of 80%~100%.A case has been executed to validate the model's feasibility.展开更多
We have developed a loop thermosyphon for cooling electronic devices. The cooling performance of a thermosyphon deteriorates with an increasing amount of non-condensable gas (NCG). Design of a thermosyphon must consid...We have developed a loop thermosyphon for cooling electronic devices. The cooling performance of a thermosyphon deteriorates with an increasing amount of non-condensable gas (NCG). Design of a thermosyphon must consider NCG to provide guaranteed performance for a long time. In this study, the heat transfer performance of a thermosyphon was measured while changing the amount of NCG. The resultant performances were expressed as approximations. These approximations enabled us to predict the total thermal resistance of the thermosyphon by the amount of NCG and input heating. Then, using the known leakage in the thermosyphon and the amount of dissolved NCG in the water, we can predict the amount of NCG and the total thermal resistance of the thermosyphon after ten years. Although there is a slight leakage in the thermosyphon, we are able to design a thermosyphon with a guaranteed level of cooling performance for a long time using the proposed design method.展开更多
Analyzing the effects of heat rejection from condensers of split-type air-conditioning units at lower-floors of MLABs (multi-level apartment buildings), using field measurements to monitor environmental conditions a...Analyzing the effects of heat rejection from condensers of split-type air-conditioning units at lower-floors of MLABs (multi-level apartment buildings), using field measurements to monitor environmental conditions and condenser operation, revealed increases in the inlet air temperature at the condensers at the upper floors, which in turn increased the power and energy requirements for these units and decreased their cooling capacities. Results indicated that a decrease of up to 16,000 tons in cooling capacity and an increase of up to 67.2 MW in the national peak load demand might be reached for a 4 ℃ temperature differential for Kuwait conditions. It is recommended that the condensers be placed in the wind pathway to minimize the impact of heat rejection and stack effect and to optimize the operation of split-type air-conditioning units, and that other factors regarding installation setup and location are investigated.展开更多
The cooling performance of air-cooled condenser(ACC)is susceptible to adverse impacts of ambient winds.In this work,three kinds of lateral double-layered deflectors installed under the ACC platform are proposed to wea...The cooling performance of air-cooled condenser(ACC)is susceptible to adverse impacts of ambient winds.In this work,three kinds of lateral double-layered deflectors installed under the ACC platform are proposed to weaken the unfavorable effects of cross winds.Through CFD simulation methods,the main parameters of thermo-flow performances of a 2×660 MW direct dry cooling system are obtained,by which it can be concluded that the deflectors can effectively reduce the inlet air temperatures while enhance the mass flow rates of upwind fans due to the guiding effect,especially at high wind speeds,while the improvement of cooling capacity of ACCs in the 0°wind direction is weak.The inclined-vertical deflectors are superior to others in performance improvement of ACCs for all cases,which can reduce the turbine back pressure by 12.15%when the wind speed is 12 m/s,so they can be applied to the performance enhancement of ACCs under windy conditions in practical engineering.展开更多
The natural wind plays disadvantageous roles in the operation of air-cooled steam condensers in power plant.It is of use to take various measures against the adverse effect of wind for the performance improvement of a...The natural wind plays disadvantageous roles in the operation of air-cooled steam condensers in power plant.It is of use to take various measures against the adverse effect of wind for the performance improvement of air-cooled condensers.Based on representative 2×600 MW direct air-cooled power plant,three ways that can arrange and optimize the flow field of cooling air thus enhance the heat transfer of air-cooled condensers were proposed.The physical and mathematical models of air-cooled condensers with various flow leading measures were presented and the flow and temperature fields of cooling air were obtained by CFD simulation.The back pressures of turbine were calculated for different measures on the basis of the heat transfer model of air-cooled condensers.The results show that the performance of air-cooled condensers is improved thus the back pressure of turbine is lowered to some extent by taking measures against the adverse impact of natural wind.展开更多
The aerodynamic behavior of tens of axial flow fans incorporated with air-cooled condensers in a power plant is different from that of an individual fan.Investigation of the aerodynamic characteristics of axial flow f...The aerodynamic behavior of tens of axial flow fans incorporated with air-cooled condensers in a power plant is different from that of an individual fan.Investigation of the aerodynamic characteristics of axial flow fan array benefits its design optimization and running regulation.Based on a representative 2600 MW direct-dry cooling power plant,the flow rate of each fan and the overall flow rate of the fan array are obtained in the absence of ambient wind and at various wind speeds and directions,using CFD simulation.The cluster factor of each fan and the average cluster factor of the fan array are calculated and analyzed.Results show that the cluster factors are different from each other and that the cluster effect with ambient wind is significantly different from the cluster effect with no wind.The fan at the periphery of the array or upwind of the ambient wind generally has a small cluster factor.The average cluster factor of the array decreases with the increasing wind speeds and also varies widely with wind direction.The cluster effect of the axial flow fan array can be applied to optimize the design and operation of air-cooled condensers in a power plant.展开更多
A data-driven surrogate model is proposed for a 64-cell air-cooled condenser system at a power plant.The surro-gate model was developed using thermofluid simulation data from an existing detailed 1-D thermofluid netwo...A data-driven surrogate model is proposed for a 64-cell air-cooled condenser system at a power plant.The surro-gate model was developed using thermofluid simulation data from an existing detailed 1-D thermofluid network simulation model.The thermofluid network model requires a minimum of 20 min to solve for a single set of in-puts.With operating conditions fluctuating constantly,performance predictions are required in shorter intervals,leading to the development of a surrogate model.Simulation data covered three operating scopes across a range of ambient air temperatures,inlet steam mass flow rates,number of operating cells,and wind speeds.The surrogate model uses multi-layer perceptron deep neural networks in the form of a binary classifier network to avoid ex-trapolation from the simulation dataset,and a regression network to provide performance predictions,including the steady-state backpressure,heat rejections,air mass flowrates,and fan motor powers on a system level.The integrated surrogate model had an average relative error of 0.3%on the test set,while the binary classifier had a 99.85%classification accuracy,indicating sufficient generalisation.The surrogate model was validated using site-data covering 10 days of operation for the case-study ACC system,providing backpressure predictions for all 1967 input samples within a few seconds of compute time.Approximately 93.5%of backpressure predictions were within±6%of the recorded backpressures,indicating sufficient accuracy of the surrogate model with a significant decrease in compute time.展开更多
Ambient wind has an unfavourable impact on air-cooled steam condenser(ACSC) performance. A new measure to improve ACSC performance is proposed by setting a diffusion type guide vane cascade beneath the ACSC platform. ...Ambient wind has an unfavourable impact on air-cooled steam condenser(ACSC) performance. A new measure to improve ACSC performance is proposed by setting a diffusion type guide vane cascade beneath the ACSC platform. The numerical models are developed to illustrate the effects of diffusion type guide vane cascade on ACSC performance. The simulation results show that this vane cascade can cause the increases in coolant flows across almost all fans due to its diffusion function and lower flow resistance. Meanwhile, the guide vane cascade also decreases the fan inlet temperatures because of the uniform flow field around the condenser cells. Comparing with the case without guide device, the overall heat transfer efficiency is increased by 11.2% for guide vane cascade case under the condition of 9 m/s. The heat transfer efficiency firstly enhances and then decreases with decreasing stagger angle of guide vane under a certain wind speed. The optimum stagger angle corresponding to the maximum heat transfer efficiency is about 65.5°. The heat transfer efficiency always enhances as increasing vane cascade height, and a vane cascade with 20 m to 30 m height may be suitable to the ACSC as considering the cost.展开更多
We demonstrate a simple and fast way to produce 87Rb Bose–Einstein condensates. A digital optical phase lock loop(OPLL) board is introduced to lock and adjust the frequency of the trap laser, which simplifies the opt...We demonstrate a simple and fast way to produce 87Rb Bose–Einstein condensates. A digital optical phase lock loop(OPLL) board is introduced to lock and adjust the frequency of the trap laser, which simplifies the optical design and improves the experimental efficiency. We collect atoms in a magneto-optical trap, then compress the cloud and cut off hot atoms by rf knife in a magnetic quadrupole trap. The atom clouds are then transferred into a spatially mode-matched optical dipole trap by lowering the quadrupole field gradient. Our system reliably produces a condensate with 2 × 106 atoms every7.5 s. The compact optical design and rapid preparation speed of our system will open the gate for mobile quantum sensing.展开更多
The represent paper will study the performance of the power plant with the combination of dry and wet cooling systems in different operating conditions. A thermodynamic performance analysis of the steam cycle system w...The represent paper will study the performance of the power plant with the combination of dry and wet cooling systems in different operating conditions. A thermodynamic performance analysis of the steam cycle system was performed by means of a program code dedicated to power plant modeling in design operating condition. Then the off-design behavior was studied by varying not only the ambient temperature and relative humidity but also several parameters connected to the cooling performance, like the exhaust steam flow rate, the air cooling fan load and the number of operating cooling water pumps and cooling towers. The result is an optimum set of variables allowing the dry and wet cooling system be regulated in such a way that the maximum power is achieved and low water consumption.展开更多
For the two-level atoms system interacting with single-mode active field in a quantum cavity, the dynamics of the Bose-Einstein Condensation (BEC) is analyzed using an ordinary method suggested by authors to solve the...For the two-level atoms system interacting with single-mode active field in a quantum cavity, the dynamics of the Bose-Einstein Condensation (BEC) is analyzed using an ordinary method suggested by authors to solve the system of Schrodinger representation in the Heisenberg representation. The wave function of the atoms is given. The stability factor determining the BEC and the selection rules of the quantum transition are solved.展开更多
文摘One of the new methods for ensuring that the battery in a thermal energy storage system is kept at the proper temperature is the heat pipe-based ThermalManagement System(TMS).In this study,the improvement of cooling performance of a heat pipe based TMS is examined through the variation of condenser section length of heat pipes in an array.The TMSs with an array of heat pipes with different condenser section lengths are considered.The system performances are evaluated using a validated numerical method.The results show that a heat pipebased TMS provides the best cooling performance when a wavy-like variation is employed and when the condenser section length of the last set of the heat pipe in the array is greater than that of the penultimate set.The maximum cell temperature and the maximum temperature difference within the cell of this TMS are decreased by 4.2 K and 1.1 K,respectively,when compared to the typical heat pipe based TMS with zero variation in its condenser section length.Conclusively,the strategy offers an improvement in the thermal uniformity for all the TMS cases.
文摘The choked back pressure characteristic of the steam turbine unit with air cooled condenser is very different with the unit with wet cooling technology, and the understanding of the choked back pressure performance change with operation load is important to guide the economic operation of the unit. One simplified Variable Operation Condition Analysis Method was put forward for calculation of the unit output-turbine back pressure characteristics. Based on this method, the choked back pressure for each operation load can be determined. An example was given for a super-critical, regenerative single-shaft, 2-casing with 2-exhaust steam turbine generation unit with air cooled condenser. The calculation result was provided and compared with the result of the unit with wet cooling technology.
文摘The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit is about 1 kW, and the work refrigerant is R22/R407C/R410A/CO2. The MATLAB/SIMULINK software was employed to build the simulation model. The thermodynamic simulation model is significant for the optimization of parameters of the unit, such as condensation and evaporation temperature and mass flow of the sanitary hot water and size of hot water storage tank. The COP of the CCP of R410A system is about 3% - 5% higher than the CCP of the R22 system, while CCP of the R407C system is a little lower than the CCP of R22 system. And the CCP of CO2 trans-critical system has advantage in the hot supply mode. The simulation method provided a theoretical reference for developing the production of CCP with substitute refrigerant R407C/R410A/CO2.
文摘The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV experiments are carried out and recirculation ratio of each condition is calculated. Results show that the thermal flow field of the cooling tower has great influence on the recirculation under the cooling tower. Ameliorating the thermal flow field of the cooling tower can reduce the recirculation under the cooling tower and improve the efficiency of air-cooled condenser also.
文摘We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 1045 mm. We applied a new analysis method for the steam state equation to analyze the molar quantity change in steam over the course of the experiment and determined the transient steam variation. We also investigated the influence of flow rates and temperatures ofcooling water on the efficiency ofsteam condensation. Our experimental results show that appropriate increasing of the cooling water flow rate can significantly accelerate the steam condensation. We achieved a rapid increase in the total volumetric heat transfer coefficient by increasing the flow rate of cooling water, which indicated a higher thermal convection between the steam and the cooling water with higher flow rates. We found that the temperature ofcooling water did not play an important role on steam condensation. This method was confirmed to be effective for rapid recovering ofsteam.
文摘The air conditioning system in the Umm Al-Qura University (Albdiya Campus) was conceived to be a district cooling by a remote chilled water plant. Recently, there are two chilled water plants in the university installed strategically to provide chilled water to all the academic and administrative buildings of the university through distribution network with total capacity approximately of 12,000 tons of refrigeration. The plants were built based on cooling towers with open water cycle as heat rejection system. Water treatment chemicals has been used to protect the cooling systems from corrosion, scaling and microbiological fouling accompanied with dissolved and suspended water impurities. Different methods are being used to determine and control the treatment chemical concentrations and system performance indicators. Traditional chemical controller has drawback of indirect measurements and set points. The purpose of this paper is to present a solution to overcome the problems of traditional and conventional chemical treatment and control sys-tems. Central cooling plant number (1) assigned to perform experimental setup using new chemical treatment technology. Advanced automatic chemical treatment controller installed on condensers (1, 2 and 3), and certain key performance indicators were selected and monitored such as chemical and water consumption, power, energy saving, and maintaining system integrity and efficiency. Satisfactory results were obtained in terms of performance and cost of operation.
基金Supported by National Key Technologies R&D Program(2006BAJ02A10)
文摘This paper established an on-line monitoring model for fouling resistance of cooling water based on heat transfer theory,which was mainly applied to the fouling resistance test for condenser of chiller in operation,and the test requirements were presented.It proves that the load ratio of chiller has big influence on the test result,and the best load ratio for test is the range of 80%~100%.A case has been executed to validate the model's feasibility.
文摘We have developed a loop thermosyphon for cooling electronic devices. The cooling performance of a thermosyphon deteriorates with an increasing amount of non-condensable gas (NCG). Design of a thermosyphon must consider NCG to provide guaranteed performance for a long time. In this study, the heat transfer performance of a thermosyphon was measured while changing the amount of NCG. The resultant performances were expressed as approximations. These approximations enabled us to predict the total thermal resistance of the thermosyphon by the amount of NCG and input heating. Then, using the known leakage in the thermosyphon and the amount of dissolved NCG in the water, we can predict the amount of NCG and the total thermal resistance of the thermosyphon after ten years. Although there is a slight leakage in the thermosyphon, we are able to design a thermosyphon with a guaranteed level of cooling performance for a long time using the proposed design method.
文摘Analyzing the effects of heat rejection from condensers of split-type air-conditioning units at lower-floors of MLABs (multi-level apartment buildings), using field measurements to monitor environmental conditions and condenser operation, revealed increases in the inlet air temperature at the condensers at the upper floors, which in turn increased the power and energy requirements for these units and decreased their cooling capacities. Results indicated that a decrease of up to 16,000 tons in cooling capacity and an increase of up to 67.2 MW in the national peak load demand might be reached for a 4 ℃ temperature differential for Kuwait conditions. It is recommended that the condensers be placed in the wind pathway to minimize the impact of heat rejection and stack effect and to optimize the operation of split-type air-conditioning units, and that other factors regarding installation setup and location are investigated.
基金The National Natural Science Foundation of China(Grant No.51476055,51821004)the National Basic Research Program of China(Grant No.2015CB251503)the Fundamental Research Funds for the Central Universities(Grant No.2018QN036)are gratefully acknowledged for supporting this research.
文摘The cooling performance of air-cooled condenser(ACC)is susceptible to adverse impacts of ambient winds.In this work,three kinds of lateral double-layered deflectors installed under the ACC platform are proposed to weaken the unfavorable effects of cross winds.Through CFD simulation methods,the main parameters of thermo-flow performances of a 2×660 MW direct dry cooling system are obtained,by which it can be concluded that the deflectors can effectively reduce the inlet air temperatures while enhance the mass flow rates of upwind fans due to the guiding effect,especially at high wind speeds,while the improvement of cooling capacity of ACCs in the 0°wind direction is weak.The inclined-vertical deflectors are superior to others in performance improvement of ACCs for all cases,which can reduce the turbine back pressure by 12.15%when the wind speed is 12 m/s,so they can be applied to the performance enhancement of ACCs under windy conditions in practical engineering.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No.2009CB219804)
文摘The natural wind plays disadvantageous roles in the operation of air-cooled steam condensers in power plant.It is of use to take various measures against the adverse effect of wind for the performance improvement of air-cooled condensers.Based on representative 2×600 MW direct air-cooled power plant,three ways that can arrange and optimize the flow field of cooling air thus enhance the heat transfer of air-cooled condensers were proposed.The physical and mathematical models of air-cooled condensers with various flow leading measures were presented and the flow and temperature fields of cooling air were obtained by CFD simulation.The back pressures of turbine were calculated for different measures on the basis of the heat transfer model of air-cooled condensers.The results show that the performance of air-cooled condensers is improved thus the back pressure of turbine is lowered to some extent by taking measures against the adverse impact of natural wind.
基金supported by the National Basic Research Program of China (2009CB219804)the National Key Technology R&D Program of China (2011BAA04B02)
文摘The aerodynamic behavior of tens of axial flow fans incorporated with air-cooled condensers in a power plant is different from that of an individual fan.Investigation of the aerodynamic characteristics of axial flow fan array benefits its design optimization and running regulation.Based on a representative 2600 MW direct-dry cooling power plant,the flow rate of each fan and the overall flow rate of the fan array are obtained in the absence of ambient wind and at various wind speeds and directions,using CFD simulation.The cluster factor of each fan and the average cluster factor of the fan array are calculated and analyzed.Results show that the cluster factors are different from each other and that the cluster effect with ambient wind is significantly different from the cluster effect with no wind.The fan at the periphery of the array or upwind of the ambient wind generally has a small cluster factor.The average cluster factor of the array decreases with the increasing wind speeds and also varies widely with wind direction.The cluster effect of the axial flow fan array can be applied to optimize the design and operation of air-cooled condensers in a power plant.
基金The authors would like to thank the National Research Foundation(NRF)[Grant Number 122957]the University of Cape Town,and the Eskom EPPEI program for funding this research.
文摘A data-driven surrogate model is proposed for a 64-cell air-cooled condenser system at a power plant.The surro-gate model was developed using thermofluid simulation data from an existing detailed 1-D thermofluid network simulation model.The thermofluid network model requires a minimum of 20 min to solve for a single set of in-puts.With operating conditions fluctuating constantly,performance predictions are required in shorter intervals,leading to the development of a surrogate model.Simulation data covered three operating scopes across a range of ambient air temperatures,inlet steam mass flow rates,number of operating cells,and wind speeds.The surrogate model uses multi-layer perceptron deep neural networks in the form of a binary classifier network to avoid ex-trapolation from the simulation dataset,and a regression network to provide performance predictions,including the steady-state backpressure,heat rejections,air mass flowrates,and fan motor powers on a system level.The integrated surrogate model had an average relative error of 0.3%on the test set,while the binary classifier had a 99.85%classification accuracy,indicating sufficient generalisation.The surrogate model was validated using site-data covering 10 days of operation for the case-study ACC system,providing backpressure predictions for all 1967 input samples within a few seconds of compute time.Approximately 93.5%of backpressure predictions were within±6%of the recorded backpressures,indicating sufficient accuracy of the surrogate model with a significant decrease in compute time.
基金supported by the National Key Research and Development Program of China (2018YFB0604302-02)the National Natural Science Foundation of China (No.51606066)
文摘Ambient wind has an unfavourable impact on air-cooled steam condenser(ACSC) performance. A new measure to improve ACSC performance is proposed by setting a diffusion type guide vane cascade beneath the ACSC platform. The numerical models are developed to illustrate the effects of diffusion type guide vane cascade on ACSC performance. The simulation results show that this vane cascade can cause the increases in coolant flows across almost all fans due to its diffusion function and lower flow resistance. Meanwhile, the guide vane cascade also decreases the fan inlet temperatures because of the uniform flow field around the condenser cells. Comparing with the case without guide device, the overall heat transfer efficiency is increased by 11.2% for guide vane cascade case under the condition of 9 m/s. The heat transfer efficiency firstly enhances and then decreases with decreasing stagger angle of guide vane under a certain wind speed. The optimum stagger angle corresponding to the maximum heat transfer efficiency is about 65.5°. The heat transfer efficiency always enhances as increasing vane cascade height, and a vane cascade with 20 m to 30 m height may be suitable to the ACSC as considering the cost.
基金National Natural Science Foundation of China(Grant No.51275523)and the State Key Laboratory of Aerodynamics Research Fund,China(Grant No.SKLA2019040302).
文摘We demonstrate a simple and fast way to produce 87Rb Bose–Einstein condensates. A digital optical phase lock loop(OPLL) board is introduced to lock and adjust the frequency of the trap laser, which simplifies the optical design and improves the experimental efficiency. We collect atoms in a magneto-optical trap, then compress the cloud and cut off hot atoms by rf knife in a magnetic quadrupole trap. The atom clouds are then transferred into a spatially mode-matched optical dipole trap by lowering the quadrupole field gradient. Our system reliably produces a condensate with 2 × 106 atoms every7.5 s. The compact optical design and rapid preparation speed of our system will open the gate for mobile quantum sensing.
文摘The represent paper will study the performance of the power plant with the combination of dry and wet cooling systems in different operating conditions. A thermodynamic performance analysis of the steam cycle system was performed by means of a program code dedicated to power plant modeling in design operating condition. Then the off-design behavior was studied by varying not only the ambient temperature and relative humidity but also several parameters connected to the cooling performance, like the exhaust steam flow rate, the air cooling fan load and the number of operating cooling water pumps and cooling towers. The result is an optimum set of variables allowing the dry and wet cooling system be regulated in such a way that the maximum power is achieved and low water consumption.
文摘For the two-level atoms system interacting with single-mode active field in a quantum cavity, the dynamics of the Bose-Einstein Condensation (BEC) is analyzed using an ordinary method suggested by authors to solve the system of Schrodinger representation in the Heisenberg representation. The wave function of the atoms is given. The stability factor determining the BEC and the selection rules of the quantum transition are solved.