With its high strength and hardness, wear-resistant steel has become an important material in the field of construction machinery manufacturing.Given that quenching technology is a crucial component of wear-resistant ...With its high strength and hardness, wear-resistant steel has become an important material in the field of construction machinery manufacturing.Given that quenching technology is a crucial component of wear-resistant steel production, the selection of the cooling method to be used during this process is important.In this study, the feasibility of quenching wear-resistant steel by air-atomized water spray cooling was studied, and the cooling rate, microstructure, and hardness of wear-resistant steel under various cooling device structures were analyzed.The results reveal that the air-atomized water spray cooling method is an effective technique in quenching wear-resistant steel.Furthermore, martensite and uniform hardness were obtained by the air-atomized water spray cooling technique.As the space between the nozzles in each row in the device increased, the cooling rate was reduced during quenching.Meanwhile, the martensite content decreased, and more carbides were observed in the martensitic structure.A mixture comprising self-tempered martensite and bainite was formed at a large distance over a longer period of time.All these factors resulted in lower hardness and worse property uniformity.展开更多
Air-atomized fog cooling is particularly suitable for the after-pot cooling of galvanized steel strips.With air and water serving as working media,an experimental study was conducted on the atomization characteristics...Air-atomized fog cooling is particularly suitable for the after-pot cooling of galvanized steel strips.With air and water serving as working media,an experimental study was conducted on the atomization characteristics of a newly-developed cross-flow type of fog nozzles.The water flux distribution,spray angle and pressure of water and air were measured.The results show that the water droplet size was small and insensitive to the water flow rate.The spray angle was small and the water flow rate slightly affected the air pressure in the chamber.An empirical correlation between the pressure in the chamber and the gas flow rate was obtained for the purpose of equipment design.展开更多
文摘With its high strength and hardness, wear-resistant steel has become an important material in the field of construction machinery manufacturing.Given that quenching technology is a crucial component of wear-resistant steel production, the selection of the cooling method to be used during this process is important.In this study, the feasibility of quenching wear-resistant steel by air-atomized water spray cooling was studied, and the cooling rate, microstructure, and hardness of wear-resistant steel under various cooling device structures were analyzed.The results reveal that the air-atomized water spray cooling method is an effective technique in quenching wear-resistant steel.Furthermore, martensite and uniform hardness were obtained by the air-atomized water spray cooling technique.As the space between the nozzles in each row in the device increased, the cooling rate was reduced during quenching.Meanwhile, the martensite content decreased, and more carbides were observed in the martensitic structure.A mixture comprising self-tempered martensite and bainite was formed at a large distance over a longer period of time.All these factors resulted in lower hardness and worse property uniformity.
文摘Air-atomized fog cooling is particularly suitable for the after-pot cooling of galvanized steel strips.With air and water serving as working media,an experimental study was conducted on the atomization characteristics of a newly-developed cross-flow type of fog nozzles.The water flux distribution,spray angle and pressure of water and air were measured.The results show that the water droplet size was small and insensitive to the water flow rate.The spray angle was small and the water flow rate slightly affected the air pressure in the chamber.An empirical correlation between the pressure in the chamber and the gas flow rate was obtained for the purpose of equipment design.