In this work,an air-blast atomizing column was used to study the CO2 capture performance with aqueous MEA(mono-ethanol-amine)and Na OH solutions.The effects of gas flow rate,the liquid to gas ratio(L/G),the CO2 concen...In this work,an air-blast atomizing column was used to study the CO2 capture performance with aqueous MEA(mono-ethanol-amine)and Na OH solutions.The effects of gas flow rate,the liquid to gas ratio(L/G),the CO2 concentration on the CO2 removal efficiency(η)and the volumetric overall mass transfer coefficient(KGav)were investigated.The air-blast atomizing column was also compared with the pressure spray tower on the studies of the CO2 capture performance.For the aqueous MEA and Na OH solutions,the experimental results show that theηdecreases with increasing gas flow rate and CO2 concentration while it increases with increasing L/G.The effects on KGavare more complicated than those forη.When the CO2 concentration is low(3 vol%),KGavincreases with increasing gas flow rate while decreases with increasing L/G.However,when the CO2 concentration is high(9.5 vol%),as the gas flow rate and L/G increases,KGavincreases first and then decreases.The aqueous MEA solution achieves higherηand KGavthan the aqueous Na OH solution.The air-blast atomizing column shows a good performance on CO2 capture.展开更多
The physical properties of sprayed droplets such as viscosity affect their deposition on the target.In order to understand the response characteristics of droplet parameters to the viscosity of a spray solution,a thre...The physical properties of sprayed droplets such as viscosity affect their deposition on the target.In order to understand the response characteristics of droplet parameters to the viscosity of a spray solution,a three-dimensional model of the external flow field of an air-blast sprayer based on computational fluid dynamics(CFD)was established according to the actual spray range and the sprayer duct structure.The change rules of droplet diameter and droplet density with distance under different viscosities of the spray solution in the flow field were obtained through numerical solution of the CFD model.The reliability of the model was verified by a chi-squared test comparing the numerical calculations with the results of field experiments.The results showed that the change rule of droplet parameters in an airflow field under different values of the spray solution viscosity was consistent.With the increase in the axial distance,the droplet size decreased initially,then increased,and finally decreased,while the droplet density gradually decreased.Moreover,the greater the spray solution viscosity,the shorter the conveying distance of the droplets in the axial direction,although viscosity was helpful in reducing the droplet drift.In addition,at the same axis distance,with the increased viscosity of the spray solution,the droplet size increased,and the sedimentation of the droplets was more rapid,while the density of the droplets decreased.The results provided a new framework for the study of air-blast spraying technology and serve as a reference for the optimization of the sprayer structure and the preparation method for spray solutions.展开更多
This study focuses on assessing the dynamic behaviors of carbon SupercompositeTM laminates when subjected to high strain-rates and air blast loads, using a shock tube for testing. The investigation aims to understand ...This study focuses on assessing the dynamic behaviors of carbon SupercompositeTM laminates when subjected to high strain-rates and air blast loads, using a shock tube for testing. The investigation aims to understand the response of these advanced materials under extreme conditions, which is crucial for applications in aerospace, military, and other high-performance industries. SupercompositeTM (CZE) prepreg, made up of a 3K plain weave carbon fabric with milled carbon fibers as interlaminar reinforcements impregnated with epoxy, is used to create SupercompositeTM (CZE) laminates. A woven carbon composite (CBE) laminate was also created using 3K plain weave Carbon/Epoxy (CBE) prepreg. Both types of laminates were designed and fabricated using the autoclave process. The dynamic behaviors of CZE and CBE laminate under transverse compression loads were evaluated using a modified Split Hopkinson Pressure Bar (SHPB). The study found that the 3D reinforcement with milled carbon fibers significantly affected the dynamic behavior of the CZE laminate. Stereo imaging videos, captured using two SHIMADZU high-speed video cameras in shock tube experiments, recorded the time history of back surface deflection. The plate specimens exhibited low deflections without any visible damage. The experimentally observed center point deflections of the CZE plates decayed sooner than those of the CBE laminates, indicating an improvement in damping due to the presence of 3D reinforced milled carbon fibers. This research shows that optimized utilization of milled carbon fibers as 3D reinforcement can withstand high stress in the thickness direction and higher energy absorption when subjected to impact and high strain-rate loading.展开更多
In this work,the effects of fuel temperatures and pressure drops on the flow field and spray characteristics of a pressure-swirl atomizer were discussed using the Particle Imaging Velocimetry(PIV),Planar Laser Induced...In this work,the effects of fuel temperatures and pressure drops on the flow field and spray characteristics of a pressure-swirl atomizer were discussed using the Particle Imaging Velocimetry(PIV),Planar Laser Induced Fluorescence(PLIF)and Laser Particle Size Analyzer(LPSA)methods.Then the air-blast atomizer was selected to study the interaction of initial atomization and flow field.The effect of fuel-air ratio on the air-blast atomizer were also considered,where the fuel-air ratio was varied by adjusting mass flow rate of the air and fuel respectively.The results show that the spray angle of the pressure-swirl atomizer increases first and changes a little after the pressure drop higher than 0.5 MPa.However,more fuel concentrate on the central region,which is mainly caused by the increase of the proportion of small droplets with lower centrifugal force.The fuel temperature can improve the spray angle only in lower pressure drop,and it has a little effect under higher pressure drops.In addition,the fuel pressure drop has an obvious influence on the fuel distribution and flow field near the nozzle exit compared with the downstream.For the air-blast atomizer,the spray angle increases compared with the pressure-swirl atomizer for the introduction of swirl air.Furthermore,the spray angle decreases with the air mass rate increasing,and it increases with the fuel mass rate increasing.The distribution of velocity and droplet near the nozzle exit is influenced by the air mass rate,and the fuel mass rate mainly affects the distribution in the downstream.The fuel accumulates in the annular area below the nozzle,and the distribution of it changes little with the development along the axial direction.展开更多
In order to solve the problem of fouling of submerged optical instruments,an air-blast cleaning mechanism was integrated into an optical sensor used for measuring suspended sediment concentration(SSC)in natural waters...In order to solve the problem of fouling of submerged optical instruments,an air-blast cleaning mechanism was integrated into an optical sensor used for measuring suspended sediment concentration(SSC)in natural waters.Laboratory experiments in a manually created fouling environment were conducted to observe the fouling process on sensor cases made of different materials,and to verify the effectiveness of air-blast cleaning in reducing fouling.Results indicated that sensors with an aluminum case experienced more serious bio-fouling than that with polyethylene case,and the air-blast cleaning mechanism was capable of reducing fouling effect on sensor signals.So the submerged optical instruments should avoid using metal materials.The duration and frequency of air-blast cleaning can be determined and adjusted depending on actual field conditions.展开更多
基金Supported by the National Natural Science Foundation of China(21729601,21776123)the Doctoral Program of Higher Education(20133221110001)+1 种基金the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Kempe Foundations,and Swedish Energy Agency(P40548-1).
文摘In this work,an air-blast atomizing column was used to study the CO2 capture performance with aqueous MEA(mono-ethanol-amine)and Na OH solutions.The effects of gas flow rate,the liquid to gas ratio(L/G),the CO2 concentration on the CO2 removal efficiency(η)and the volumetric overall mass transfer coefficient(KGav)were investigated.The air-blast atomizing column was also compared with the pressure spray tower on the studies of the CO2 capture performance.For the aqueous MEA and Na OH solutions,the experimental results show that theηdecreases with increasing gas flow rate and CO2 concentration while it increases with increasing L/G.The effects on KGavare more complicated than those forη.When the CO2 concentration is low(3 vol%),KGavincreases with increasing gas flow rate while decreases with increasing L/G.However,when the CO2 concentration is high(9.5 vol%),as the gas flow rate and L/G increases,KGavincreases first and then decreases.The aqueous MEA solution achieves higherηand KGavthan the aqueous Na OH solution.The air-blast atomizing column shows a good performance on CO2 capture.
基金the financial support provided by the National Natural Science Foundation of China(Grant No.31671591)Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams(Grant No.2021KJ108)+1 种基金Guangzhou Science and technology planning project(Grant No.202002030245)Ministry of Finance and Ministry of Agriculture and Rural Affairs:Special Fund for Construction of Modern Agricultural Industry Technology System(Grant No.cars-26).
文摘The physical properties of sprayed droplets such as viscosity affect their deposition on the target.In order to understand the response characteristics of droplet parameters to the viscosity of a spray solution,a three-dimensional model of the external flow field of an air-blast sprayer based on computational fluid dynamics(CFD)was established according to the actual spray range and the sprayer duct structure.The change rules of droplet diameter and droplet density with distance under different viscosities of the spray solution in the flow field were obtained through numerical solution of the CFD model.The reliability of the model was verified by a chi-squared test comparing the numerical calculations with the results of field experiments.The results showed that the change rule of droplet parameters in an airflow field under different values of the spray solution viscosity was consistent.With the increase in the axial distance,the droplet size decreased initially,then increased,and finally decreased,while the droplet density gradually decreased.Moreover,the greater the spray solution viscosity,the shorter the conveying distance of the droplets in the axial direction,although viscosity was helpful in reducing the droplet drift.In addition,at the same axis distance,with the increased viscosity of the spray solution,the droplet size increased,and the sedimentation of the droplets was more rapid,while the density of the droplets decreased.The results provided a new framework for the study of air-blast spraying technology and serve as a reference for the optimization of the sprayer structure and the preparation method for spray solutions.
文摘This study focuses on assessing the dynamic behaviors of carbon SupercompositeTM laminates when subjected to high strain-rates and air blast loads, using a shock tube for testing. The investigation aims to understand the response of these advanced materials under extreme conditions, which is crucial for applications in aerospace, military, and other high-performance industries. SupercompositeTM (CZE) prepreg, made up of a 3K plain weave carbon fabric with milled carbon fibers as interlaminar reinforcements impregnated with epoxy, is used to create SupercompositeTM (CZE) laminates. A woven carbon composite (CBE) laminate was also created using 3K plain weave Carbon/Epoxy (CBE) prepreg. Both types of laminates were designed and fabricated using the autoclave process. The dynamic behaviors of CZE and CBE laminate under transverse compression loads were evaluated using a modified Split Hopkinson Pressure Bar (SHPB). The study found that the 3D reinforcement with milled carbon fibers significantly affected the dynamic behavior of the CZE laminate. Stereo imaging videos, captured using two SHIMADZU high-speed video cameras in shock tube experiments, recorded the time history of back surface deflection. The plate specimens exhibited low deflections without any visible damage. The experimentally observed center point deflections of the CZE plates decayed sooner than those of the CBE laminates, indicating an improvement in damping due to the presence of 3D reinforced milled carbon fibers. This research shows that optimized utilization of milled carbon fibers as 3D reinforcement can withstand high stress in the thickness direction and higher energy absorption when subjected to impact and high strain-rate loading.
基金This work was supported by National Science and Technology Major Project(Project No.2017-Ⅲ-0007 and No.2017-Ⅲ-0002)Youth Innovation Promotion Association,Chinese Academy of Science(No.2019147).
文摘In this work,the effects of fuel temperatures and pressure drops on the flow field and spray characteristics of a pressure-swirl atomizer were discussed using the Particle Imaging Velocimetry(PIV),Planar Laser Induced Fluorescence(PLIF)and Laser Particle Size Analyzer(LPSA)methods.Then the air-blast atomizer was selected to study the interaction of initial atomization and flow field.The effect of fuel-air ratio on the air-blast atomizer were also considered,where the fuel-air ratio was varied by adjusting mass flow rate of the air and fuel respectively.The results show that the spray angle of the pressure-swirl atomizer increases first and changes a little after the pressure drop higher than 0.5 MPa.However,more fuel concentrate on the central region,which is mainly caused by the increase of the proportion of small droplets with lower centrifugal force.The fuel temperature can improve the spray angle only in lower pressure drop,and it has a little effect under higher pressure drops.In addition,the fuel pressure drop has an obvious influence on the fuel distribution and flow field near the nozzle exit compared with the downstream.For the air-blast atomizer,the spray angle increases compared with the pressure-swirl atomizer for the introduction of swirl air.Furthermore,the spray angle decreases with the air mass rate increasing,and it increases with the fuel mass rate increasing.The distribution of velocity and droplet near the nozzle exit is influenced by the air mass rate,and the fuel mass rate mainly affects the distribution in the downstream.The fuel accumulates in the annular area below the nozzle,and the distribution of it changes little with the development along the axial direction.
基金The authors acknowledge that this research was supported by the Environmental Security Technology Certification(ESTCP)program,U.S.Department of Defensethe National Natural Science Foundation of China(Grant No.51309103)。
文摘In order to solve the problem of fouling of submerged optical instruments,an air-blast cleaning mechanism was integrated into an optical sensor used for measuring suspended sediment concentration(SSC)in natural waters.Laboratory experiments in a manually created fouling environment were conducted to observe the fouling process on sensor cases made of different materials,and to verify the effectiveness of air-blast cleaning in reducing fouling.Results indicated that sensors with an aluminum case experienced more serious bio-fouling than that with polyethylene case,and the air-blast cleaning mechanism was capable of reducing fouling effect on sensor signals.So the submerged optical instruments should avoid using metal materials.The duration and frequency of air-blast cleaning can be determined and adjusted depending on actual field conditions.