Train timetables and operations are defined by the train running time in sections,dwell time at stations,and headways between trains.Accurate estimation of these factors is essential to decision-making for train delay...Train timetables and operations are defined by the train running time in sections,dwell time at stations,and headways between trains.Accurate estimation of these factors is essential to decision-making for train delay reduction,train dispatching,and station capacity estimation.In the present study,we aim to propose a train dwell time model based on an averaging mechanism and dynamic updating to address the challenges in the train dwell time prediction problem(e.g.,dynamics over time,heavy-tailed distribution of data,and spatiotemporal relationships of factors)for real-time train dispatching.The averaging mechanism in the present study is based on multiple state-of-the-art base predictors,enabling the proposed model to integrate the advantages of the base predictors in addressing the challenges in terms of data attributes and data distributions.Then,considering the influence of passenger flow on train dwell time,we use a dynamic updating method based on exponential smoothing to improve the performance of the proposed method by considering the real-time passenger amount fluctuations(e.g.,passenger soars in peak hours or passenger plunges during regular periods).We conduct experiments with the train operation data and passenger flow data from the Chinese high-speed railway line.The results show that due to the advantages over the base predictors,the averaging mechanism can more accurately predict the dwell time at stations than its counterparts for different prediction horizons regarding predictive errors and variances.Further,the experimental results show that dynamic smoothing can significantly improve the accuracy of the proposed model during passenger amount changes,i.e.,15.4%and 15.5%corresponding to the mean absolute error and root mean square error,respectively.Based on the proposed predictor,a feature importance analysis shows that the planned dwell time and arrival delay are the two most important factors to dwell time.However,planned time has positive influences,whereas arrival delay has negative influences.展开更多
Purpose-This study aims to improve the passenger accessibility of passenger demands in the end-ofoperation period.Design/methodology/approach-A mixed integer nonlinear programming model for last train timetable optim...Purpose-This study aims to improve the passenger accessibility of passenger demands in the end-ofoperation period.Design/methodology/approach-A mixed integer nonlinear programming model for last train timetable optimization of the metro was proposed considering the constraints such as the maximum headway,the minimum headway and the latest end-of-operation time.The objective of the model is to maximize the number of reachable passengers in the end-of-operation period.A solution method based on a preset train service is proposed,which significantly reduces the variables of deciding train services in the original model and reformulates it into a mixed integer linear programming model.Findings-The results of the case study of Wuhan Metro show that the solution method can obtain highquality solutions in a shorter time;and the shorter the time interval of passenger flow data,the more obvious the advantage of solution speed;after optimization,the number of passengers reaching the destination among the passengers who need to take the last train during the end-of-operation period can be increased by 10%.Originality/value-Existing research results only consider the passengers who take the last train.Compared with previous research,considering the overall passenger demand during the end-of-operation period can make more passengers arrive at their destination.Appropriately delaying the end-of-operation time can increase the proportion of passengers who can reach the destination in the metro network,but due to the decrease in passenger demand,postponing the end-of-operation time has a bottleneck in increasing the proportion of passengers who can reach the destination.展开更多
In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line...In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line based on the proposed formula of the minimum safety headway. Moreover, we provide the control strategies of the high-speed passenger train operations based on the proposed formula of the real-time minimum safety headway and the dynamic model of highspeed passenger train movements. The simulation results demonstrate that the proposed control strategies of the passenger train operations can greatly reduce the delay propagation in the high-speed rail line when a random delay occurs.展开更多
Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestio...Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches.展开更多
A simulation model was proposed to investigate the relationship between train delays and passenger delays and to predict the dynamic passenger distribution in a large-scale rail transit network. It was assumed that th...A simulation model was proposed to investigate the relationship between train delays and passenger delays and to predict the dynamic passenger distribution in a large-scale rail transit network. It was assumed that the time varying original-destination demand and passenger path choice probability were given. Passengers were assumed not to change their destinations and travel paths after delay occurs. CapaciW constraints of train and queue rules of alighting and boarding were taken into account. By using the time-driven simulation, the states of passengers, trains and other facilities in the network were updated every time step. The proposed methodology was also tested in a real network, for demonstration. The results reveal that short train delay does not necessarily result in passenger delays, while, on the contrary, some passengers may get benefits from the short delay. However, large initial train delay may result in not only knock-on train and passenger delays along the same line, but also the passenger delays across the entire rail transit network.展开更多
The study evaluates the feasibility of running passenger train service from Las Vegas, NV on the Union Pacific Railroad (UPRR), to Barstow, on the Burlington Northern Santa Fe (BNSF) track, to Mojave on UPRR track aga...The study evaluates the feasibility of running passenger train service from Las Vegas, NV on the Union Pacific Railroad (UPRR), to Barstow, on the Burlington Northern Santa Fe (BNSF) track, to Mojave on UPRR track again, and to Lancaster connecting Metrolink to their destinations in Southern California. In this study, the railroad infrastructure was inventoried and issues related to running the passenger service were identified. Passenger train operation was evaluated based on the Rail Traffic Controller (RTC) simulation model. The performance measures of passenger trains including travel time, overall delay and average speed are analyzed. The uncertainty in freight flow and its impact on providing the passenger service is addressed by conducting a sensitivity analysis. The conclusion is that the existing railroad infrastructure is sufficient to provide a passenger train service from Las Vegas to Los Angeles. From an operational perspective, the passenger train is not expected to influence freight trains’ performance on the existing railroads. When freight train flows are increased to 50%, the influence of passenger train service on the freight operation is still minimal. This study recommends restoring a platform at the Las Vegas Station. At the Mojave Station, special care should be given on running the passenger trains where there is no direct railroad connection from BNSF to UPRR. Platforms and walkways require construction at the Lancaster Station for transferring passengers between the Metrolink trains and X-Train. Transferring the passenger train at this station involves stopping the train on mainline and coordinating the operations between different railroads.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.71871188).
文摘Train timetables and operations are defined by the train running time in sections,dwell time at stations,and headways between trains.Accurate estimation of these factors is essential to decision-making for train delay reduction,train dispatching,and station capacity estimation.In the present study,we aim to propose a train dwell time model based on an averaging mechanism and dynamic updating to address the challenges in the train dwell time prediction problem(e.g.,dynamics over time,heavy-tailed distribution of data,and spatiotemporal relationships of factors)for real-time train dispatching.The averaging mechanism in the present study is based on multiple state-of-the-art base predictors,enabling the proposed model to integrate the advantages of the base predictors in addressing the challenges in terms of data attributes and data distributions.Then,considering the influence of passenger flow on train dwell time,we use a dynamic updating method based on exponential smoothing to improve the performance of the proposed method by considering the real-time passenger amount fluctuations(e.g.,passenger soars in peak hours or passenger plunges during regular periods).We conduct experiments with the train operation data and passenger flow data from the Chinese high-speed railway line.The results show that due to the advantages over the base predictors,the averaging mechanism can more accurately predict the dwell time at stations than its counterparts for different prediction horizons regarding predictive errors and variances.Further,the experimental results show that dynamic smoothing can significantly improve the accuracy of the proposed model during passenger amount changes,i.e.,15.4%and 15.5%corresponding to the mean absolute error and root mean square error,respectively.Based on the proposed predictor,a feature importance analysis shows that the planned dwell time and arrival delay are the two most important factors to dwell time.However,planned time has positive influences,whereas arrival delay has negative influences.
基金supported by Talents Funds for Basic Scientific Research Business Expenses of Central Colleges and Universities (Grant No.2021RC228)Special Funds for Basic Scientific Research Business Expenses of Central Colleges and Universities (Grant No.2021YJS103).
文摘Purpose-This study aims to improve the passenger accessibility of passenger demands in the end-ofoperation period.Design/methodology/approach-A mixed integer nonlinear programming model for last train timetable optimization of the metro was proposed considering the constraints such as the maximum headway,the minimum headway and the latest end-of-operation time.The objective of the model is to maximize the number of reachable passengers in the end-of-operation period.A solution method based on a preset train service is proposed,which significantly reduces the variables of deciding train services in the original model and reformulates it into a mixed integer linear programming model.Findings-The results of the case study of Wuhan Metro show that the solution method can obtain highquality solutions in a shorter time;and the shorter the time interval of passenger flow data,the more obvious the advantage of solution speed;after optimization,the number of passengers reaching the destination among the passengers who need to take the last train during the end-of-operation period can be increased by 10%.Originality/value-Existing research results only consider the passengers who take the last train.Compared with previous research,considering the overall passenger demand during the end-of-operation period can make more passengers arrive at their destination.Appropriately delaying the end-of-operation time can increase the proportion of passengers who can reach the destination in the metro network,but due to the decrease in passenger demand,postponing the end-of-operation time has a bottleneck in increasing the proportion of passengers who can reach the destination.
基金supported by the National Basic Research Program of China (Grant No. 2012CB725400)the National Natural Science Foundation of China (Grant No. 71131001-1)the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University,China (Grant Nos. RCS2012ZZ001 and RCS2012ZT001)
文摘In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line based on the proposed formula of the minimum safety headway. Moreover, we provide the control strategies of the high-speed passenger train operations based on the proposed formula of the real-time minimum safety headway and the dynamic model of highspeed passenger train movements. The simulation results demonstrate that the proposed control strategies of the passenger train operations can greatly reduce the delay propagation in the high-speed rail line when a random delay occurs.
基金supported the National Natural Science Foundation of China (71621001, 71825004, and 72001019)the Fundamental Research Funds for Central Universities (2020JBM031 and 2021YJS203)the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety (RCS2020ZT001)
文摘Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches.
基金Project(51008229)supported by the National Natural Science Foundation of ChinaProject supported by Key Laboratory of Road and Traffic Engineering of Tongji University,China
文摘A simulation model was proposed to investigate the relationship between train delays and passenger delays and to predict the dynamic passenger distribution in a large-scale rail transit network. It was assumed that the time varying original-destination demand and passenger path choice probability were given. Passengers were assumed not to change their destinations and travel paths after delay occurs. CapaciW constraints of train and queue rules of alighting and boarding were taken into account. By using the time-driven simulation, the states of passengers, trains and other facilities in the network were updated every time step. The proposed methodology was also tested in a real network, for demonstration. The results reveal that short train delay does not necessarily result in passenger delays, while, on the contrary, some passengers may get benefits from the short delay. However, large initial train delay may result in not only knock-on train and passenger delays along the same line, but also the passenger delays across the entire rail transit network.
文摘The study evaluates the feasibility of running passenger train service from Las Vegas, NV on the Union Pacific Railroad (UPRR), to Barstow, on the Burlington Northern Santa Fe (BNSF) track, to Mojave on UPRR track again, and to Lancaster connecting Metrolink to their destinations in Southern California. In this study, the railroad infrastructure was inventoried and issues related to running the passenger service were identified. Passenger train operation was evaluated based on the Rail Traffic Controller (RTC) simulation model. The performance measures of passenger trains including travel time, overall delay and average speed are analyzed. The uncertainty in freight flow and its impact on providing the passenger service is addressed by conducting a sensitivity analysis. The conclusion is that the existing railroad infrastructure is sufficient to provide a passenger train service from Las Vegas to Los Angeles. From an operational perspective, the passenger train is not expected to influence freight trains’ performance on the existing railroads. When freight train flows are increased to 50%, the influence of passenger train service on the freight operation is still minimal. This study recommends restoring a platform at the Las Vegas Station. At the Mojave Station, special care should be given on running the passenger trains where there is no direct railroad connection from BNSF to UPRR. Platforms and walkways require construction at the Lancaster Station for transferring passengers between the Metrolink trains and X-Train. Transferring the passenger train at this station involves stopping the train on mainline and coordinating the operations between different railroads.