To study the draft sensation distribution of an air jet supply system in a large space building in summer,experiments are conducted in a large laboratory.The temperature,velocity and draft sensation distributions at a...To study the draft sensation distribution of an air jet supply system in a large space building in summer,experiments are conducted in a large laboratory.The temperature,velocity and draft sensation distributions at a nozzle height of 4 m in the occupied zone are obtained.Then,the numerical simulation under the test condition is carried out by the computational fluid dynamics(CFD)method.The calculation results of the indoor vertical temperature and the draft sensation distribution are validated by the test data.Simulations with different nozzle heights are conducted.The satisfactory air supply condition is determined by analyzing the draft sensations and the temperatures in the occupied zone under three conditions.The simulation results show that the optimal draft sensation distribution and the uniform temperature and velocity fields can be obtained at a nozzle height of 5 m.展开更多
To overcome the disadvantages of displacement ventilation( DV) and traditional mixing ventilation( MV) system,a new ventilation system known as impinging jet ventilation system( IJVS)has been developing. The warm air ...To overcome the disadvantages of displacement ventilation( DV) and traditional mixing ventilation( MV) system,a new ventilation system known as impinging jet ventilation system( IJVS)has been developing. The warm air can be supplied with impinging jet ventilation( IJV), while the DV is only used for cooling.However,the flow and temperature field of IJV under heating scenario has had few references. The paper is mainly focused on computational fluid dynamics( CFD) and developing an adequate correlation between the distance L that warm air can reach and different parameters in the warm IJVS by using response surface methodology( RSM). The results indicate that L decreases as the supply velocity υ decreases but increases as the supply temperature difference ΔT or the discharge height h decreases. In the variable air volume( VAV) system, it is necessary to determine supply parameters both under the maximum-heat-load condition and the small-heat-load condition. Unlike the VAV system,the constant air volume( CAV) system has no need to study the small-heat-load condition. Draught discomfort near the nozzle becomes the issue of concern in IJVS, thus the suitable discharge height is of great importance in design and can be calculated based on the predictive model.展开更多
基金The National Natural Science Foundation of China(No.50478113)the Leading Academic Discipline Project of Shanghai Municipal Education Commission(No.J50502)
文摘To study the draft sensation distribution of an air jet supply system in a large space building in summer,experiments are conducted in a large laboratory.The temperature,velocity and draft sensation distributions at a nozzle height of 4 m in the occupied zone are obtained.Then,the numerical simulation under the test condition is carried out by the computational fluid dynamics(CFD)method.The calculation results of the indoor vertical temperature and the draft sensation distribution are validated by the test data.Simulations with different nozzle heights are conducted.The satisfactory air supply condition is determined by analyzing the draft sensations and the temperatures in the occupied zone under three conditions.The simulation results show that the optimal draft sensation distribution and the uniform temperature and velocity fields can be obtained at a nozzle height of 5 m.
基金National Natural Science Foundation of China(No.51278094)the Innovation Foundation of Shanghai Education Commission,China(No.13ZZ054)
文摘To overcome the disadvantages of displacement ventilation( DV) and traditional mixing ventilation( MV) system,a new ventilation system known as impinging jet ventilation system( IJVS)has been developing. The warm air can be supplied with impinging jet ventilation( IJV), while the DV is only used for cooling.However,the flow and temperature field of IJV under heating scenario has had few references. The paper is mainly focused on computational fluid dynamics( CFD) and developing an adequate correlation between the distance L that warm air can reach and different parameters in the warm IJVS by using response surface methodology( RSM). The results indicate that L decreases as the supply velocity υ decreases but increases as the supply temperature difference ΔT or the discharge height h decreases. In the variable air volume( VAV) system, it is necessary to determine supply parameters both under the maximum-heat-load condition and the small-heat-load condition. Unlike the VAV system,the constant air volume( CAV) system has no need to study the small-heat-load condition. Draught discomfort near the nozzle becomes the issue of concern in IJVS, thus the suitable discharge height is of great importance in design and can be calculated based on the predictive model.