A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a va...A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a variable refrigerant flow(VRF)air-conditioning unit,a water loop and an air source heat pump.The water loop transports energy among different regions in the buildings instead of refrigerant pipes,decreasing the scale of the VRF air-conditioning unit and improving the performance.Previous models for refrigerants and building loads are cited in this investigation.Mathematical models of major equipment and other elements of the system are established using the lumped parameter method based on the DATAFIT software and the MATLAB software.The performance of the WLVRF system is simulated.The initial investments and the running costs are calculated based on the results of market research.Finally,a contrast is carried out between the WLVRF system and the traditional VRF system.The results show that the WLVRF system has a better working condition and lower running costs than the traditional VRF system.展开更多
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther...The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.展开更多
This paper presented an entropy evaluation method for the influences of condense heat recovery system on the environment.Aiming at the damage of the condense heat to the environment,an entropy of resource loss and an ...This paper presented an entropy evaluation method for the influences of condense heat recovery system on the environment.Aiming at the damage of the condense heat to the environment,an entropy of resource loss and an emission entropy from the condense heat recovery system in the air conditioning refrigerating machine were introduced.For the evaluation of the entropies,we developed a new algorithm for the parameter identification,called the composite influence coefficient,based on the Least Squares Support Vector Machine method.By simulation,the numerical experiments shows that the Least Squares Support Vector Machine method is one of the powerful methods for the parameter identification to compute the damage entropy of the condense heat,with the largest training error being-0.025(the relative error being-3.56%),and the biggest test error being 0.015(the relative error being 2.5%).展开更多
The frost growth on cold surfaces in evaporators is an undesirable phenomenon which becomes a problem for the thermal efficiency of the refrigeration systems because the ice layer acts as a thermal insulation,drastica...The frost growth on cold surfaces in evaporators is an undesirable phenomenon which becomes a problem for the thermal efficiency of the refrigeration systems because the ice layer acts as a thermal insulation,drastically reducing the rate of heat transfer in the system.Its accumulation implies an increase in energy demand and a decrease in the performance of various components involved in the refrigeration process,reducing its efficiency and making it necessary to periodically remove the frost,resulting in expenses for the defrost process.In the present work,a numerical-experimental analysis was performed in order to understand the formation process of porous ice in flat plates with different surface treatments and parameters.This understanding is of utmost importance to minimize the formation of porous ice on cold surfaces and improve equipment efficiency and performance.In this context,a low-cost experimental apparatus was developed,enabling an experimental analysis of the phenomenon under study.The environmental conditions evaluated are the temperature of the cold surface,roomtemperature,humidity,and air velocity.The material of the surfaces under study are aluminum,copper,and brass with different surface finishes,designated as smooth,grooved(hydrophilic),and varnished(hydrophobic).The numerical-experimental analysis demonstrates measurements and simulations of the thickness,surface temperature,and growth rate of the porous ice layer as a function of the elapsed time.The numerical results were in good agreement with the experimental results,indicating that the varnished surface,with hydrophobic characteristics,presents greater difficulty in providing the phenomenon.Therefore,the results showed that application of a coating allowed a significant reduction on the frost formation process contributing to the improvement of thermal efficiency and performance of refrigeration systems.展开更多
The optimal design of a compression refrigeration system(CRS) with multiple temperature levels is very important to chemical process industries and also represents considerable challenges in process systems engineerin...The optimal design of a compression refrigeration system(CRS) with multiple temperature levels is very important to chemical process industries and also represents considerable challenges in process systems engineering. In this paper, a general methodology for the optimal synthesis of the CRS, which simultaneously integrates CRS and Heat Exchanger Networks(HEN) to minimize the total compressor shaft work consumption based on an MINLP model, has been proposed. The major contribution of this method is in addressing the optimal design of refrigeration cycle with variable refrigeration temperature levels. The method can be used to make major decisions in the CRS design, such as the number of levels, temperature levels, and heat transfer duties. The performance of the developed methodology has been illustrated with a case study of an ethylene CRS in an industrial ethylene plant, and the optimal solution has been examined by rigorous simulations in Aspen Plus to verify its feasibility and consistency.展开更多
Different from the traditional hydraulic oil cooling method,a new type of constant temperature oil tank cooling system based on semiconductor refrigeration technology is designed. This paper studies the principle of s...Different from the traditional hydraulic oil cooling method,a new type of constant temperature oil tank cooling system based on semiconductor refrigeration technology is designed. This paper studies the principle of semiconductor refrigeration and establishes a heat transfer model. Semiconductor cooler on piping refrigeration is simulated,and influence of the parameters on the outlet temperature,such as pipe pressure difference of inlet and outlet,pipe length,pipe radius,are gotten,and then hydraulic tank semiconductor refrigeration system is proposed. The semiconductor refrigeration system can control temperature at 37 ± 1°C.展开更多
Simultaneous optimization of refrigeration system(RS)and its heat exchanger network(HEN)leads to a large-scale non-convex mixed-integer non-linear programming(MINLP)problem.Conventionally,researchers usually adopted s...Simultaneous optimization of refrigeration system(RS)and its heat exchanger network(HEN)leads to a large-scale non-convex mixed-integer non-linear programming(MINLP)problem.Conventionally,researchers usually adopted simplifications to confine problem scale from being too large at the cost of reducing solution space.This study established an optimization framework for the simultaneous optimization of RS and HEN.Firstly,A more comprehensive and compact model was developed to guarantee a relatively complete solution space while reducing model scale as well as its solving difficulty.In this model,a tandem arrangement of connecting sub-coolers and expansion valves was considered in the superstructure;and the pressure/temperature levels were optimized as continuous variables.On this basis,we proposed a"two-step transformation method"to equivalently transform the cross-level structure into a no n-cross-level structu re,and the de-redundant superstructu re was established with ensuring comprehensiveness and rigor.Furthermore,the MINLP model was developed and solved by Particle Swarm Optimization algorithm.Finally,our methodology was validated to get better optimal results with less CPU time in two case studies,an ethylene RS in an existing plant and a reported propylene RS.展开更多
High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-per...High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-performing server systems pose an immense thermal challenge for cooling. The use of refrigerants as a direct-to-chip cooling method is investigated as a potential cooling solution for cooling AI chips. Using a vapor compression refrigeration system (VCRS), the coolant temperature will be sub-ambient thereby increasing the total cooling capacity. Coupled with the implementation of a direct-to-chip boiler, using refrigerants to cool AI server systems can materialize as a potential solution for current AI server cooling demands. In this study, a comparison of 8 different refrigerants: R-134a, R-153a, R-717, R-508B, R-22, R-12, R-410a, and R-1234yf is analyzed for optimal performance. A control theoretical VCRS model is created to assess variable refrigerants under the same operational conditions. From this model, the coefficient of performance (COP), required mass flow rate of refrigerant, work required by the compressor, and overall heat transfer coefficient is determined for all 8 refrigerants. Lastly, a comprehensive analysis is provided to determine the most optimal refrigerants for cooling applications. R-717, commonly known as Ammonia, was found to have the highest COP value thus proving to be the optimal refrigerant for cooling AI chips and high-performing server applications.展开更多
By means of the Second Law of Thermodynamics,thispaper gives out the entropy analysis method for vapor-comperession refrigeration system.The thermal irrevers-ibility of the system charged with R12 and its hopeful al-t...By means of the Second Law of Thermodynamics,thispaper gives out the entropy analysis method for vapor-comperession refrigeration system.The thermal irrevers-ibility of the system charged with R12 and its hopeful al-ternative refrlgerant R134a have been studied respective-ly.On the basis of all the research results of this paper,the measure used to save energy for vapor-compressionrefrigeration system has been put out.展开更多
The airborne high power electrical equipments have been widely used in modern aircrafts , which consequently causes the dramatic increase of heating load up to dozens of kilowatts.Accordingly , vapor-compression refri...The airborne high power electrical equipments have been widely used in modern aircrafts , which consequently causes the dramatic increase of heating load up to dozens of kilowatts.Accordingly , vapor-compression refrigeration system ( VCRS ) with lower engine bleed air and larger refrigeration capacity has been paid much attention in recent years.Therefore , based on the analysis of the characteristics of VCRS , an experiment system of VCRS using R134ais set up to simulate operation performances.The influences of different parameters including evaporation pressure , condensing pressure , refrigerant mass flow rate and compressor rotation speed are also investigated.The impacts of different parameters on the system performance are various.This work can help to establish the specific control law under different work conditions.展开更多
An open loop cycle carbon dioxide(CO2)refrigeration system is established,and the cooling performances of high-pressure CO2 under different storage conditions(25℃,30℃,and 35℃)are investigated.Moreover,the experimen...An open loop cycle carbon dioxide(CO2)refrigeration system is established,and the cooling performances of high-pressure CO2 under different storage conditions(25℃,30℃,and 35℃)are investigated.Moreover,the experimental mass flow rates of CO2 are compared with the theoretical values at different conditions and refrigeration capacities.The results indicate that the storage condition of CO2 has a significant impact on the refrigeration performance,and the mass flow rate of CO2 increases with the increasing storage temperature in a given refrigeration capacity.展开更多
In the present study, the ice slurry refrigeration system with pre-cooling heat exchanger (ISSH) is studied experimentally to achieve the system performance, ice crystal formation time and the temperature of ice cryst...In the present study, the ice slurry refrigeration system with pre-cooling heat exchanger (ISSH) is studied experimentally to achieve the system performance, ice crystal formation time and the temperature of ice crystal formation. The operating parameters considered in this paper include the concentration of salt solution, suction pressure, discharge pressure and Energy Efficiency Ratio (EER). The result shows that the temperature of critical time of ice crystal formation decreases with the increasing concentration of salt solution and that the ice crystal formation time increases with the increasing concentration of salt solution. In the same concentration of salt solution, the ice crystal formation temperature of ISSH is lower than that of basic ice slurry refrigeration system (BISS), and the ice crystal formation time of ISSH is shorter than that of BISS. On the whole, the EER of ice slurry refrigeration system with pre-cooling heat exchanger is higher than that of basic ice slurry refrigeration system.展开更多
The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analy...The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analyzed.The test shows that making full use of the evaporative cooling "free cooling" in Spring and Autumn seasons can fully meet the requirements of air-conditioned comfort through the switch of the function in different seasons.Taking into account the evaporative cooling fan and pump energy consumption,compared with the traditional mechanical refrigeration system,more than 80 percent of energy can be saved,and the energy efficiency ratio of the Unit(EER)is as high as 7.63.Using the two stages of indirect evaporative cooling to pre-cool the new wind in summer,under the conditions of the same air supply temperature requirements,0.83 kg/s chilled water saved can be equivalent to the traditional mechanical refrigeration system,and when the new wind ratio up to 50 percent,more than 10 percent load was reduced in mechanical refrigeration system.The overall EER increased about 35 percent.展开更多
A new model of a quantum refrigeration cycle composed of two adiabatic and two isomagnetic field processes is established. The working substance in the cycle consists of many non-interacting spin-1/2 systems. The perf...A new model of a quantum refrigeration cycle composed of two adiabatic and two isomagnetic field processes is established. The working substance in the cycle consists of many non-interacting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semi-group approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate, and power input, are given. It is found that the coefficient of performance of this cycle is in the closest analogy to that of the classical Carnot cycle. Furthermore, at high temperatures the optimal relations of the cooling rate and the maximum cooling rate are analysed in detail. Some performance characteristic curves of the cycle are plotted, such as the cooling rate versus the maximum ratio between high and low "temperatures" of the working substances, the maximum cooling rate versus the ratio between high and low "magnetic fields" and the "temperature" ratio between high and low reservoirs. The obtained results are further generalized and discussed, so that they may be directly applied to describing the performance of the quantum refrigerator using spin-J systems as the working substance. Finally, the optimum characteristics of the quantum Carnot and Ericsson refrigeration cycles are derived by analogy.展开更多
Solid adsorption system, one of alternative refrigeration systems, is utilized to provide cold for refrigerator or air-conditioner and can be operated by assistance of solar heat. System performance study through comp...Solid adsorption system, one of alternative refrigeration systems, is utilized to provide cold for refrigerator or air-conditioner and can be operated by assistance of solar heat. System performance study through computer usage to develop simulation program and simulate behaviors of system operation can give designed system which suits for user’s need. Also, the present study aims to develop dynamic simulation program of solid adsorption refrigeration system operated by solar assistance to simulate behaviors of system operation and its performance. Flat plate collectror is utilized to provide thermal energy for system’s adsorber and activated carbon/methanol is used to be a suitable working pair. Simulation procedure starts with various solar radiation intensities as input energy on solar collector and water is used as collector working fluid. Behavior of system operation can be considered to be 4 steps as isosteric heating, isobaric desorption, isosteric cooling and isobaric adsorption, respectively. This research studies the effect of varying solar radiation intensity on temperature, pressure of adsorber, adsorption ratio at each steps of system operated ranging from 6:00 am (the first day) to 6:00 am (the next day) and system performance which is defined as coefficient of performance, COP. In addition, the simulation result shows monthly average COP of 0.43 compared to a result of another previous research work under the same operating condition and the percentage error is 7.5%.展开更多
文摘A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a variable refrigerant flow(VRF)air-conditioning unit,a water loop and an air source heat pump.The water loop transports energy among different regions in the buildings instead of refrigerant pipes,decreasing the scale of the VRF air-conditioning unit and improving the performance.Previous models for refrigerants and building loads are cited in this investigation.Mathematical models of major equipment and other elements of the system are established using the lumped parameter method based on the DATAFIT software and the MATLAB software.The performance of the WLVRF system is simulated.The initial investments and the running costs are calculated based on the results of market research.Finally,a contrast is carried out between the WLVRF system and the traditional VRF system.The results show that the WLVRF system has a better working condition and lower running costs than the traditional VRF system.
文摘The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.
基金Supported by Program of Science and Technology of Hunan Province(2007FJ2006)Project the Program of Science and Tech-nology of Hunan Province(2007TP4030)Hunan Provincial Natural Science Foundation of China(08JJ3093)
文摘This paper presented an entropy evaluation method for the influences of condense heat recovery system on the environment.Aiming at the damage of the condense heat to the environment,an entropy of resource loss and an emission entropy from the condense heat recovery system in the air conditioning refrigerating machine were introduced.For the evaluation of the entropies,we developed a new algorithm for the parameter identification,called the composite influence coefficient,based on the Least Squares Support Vector Machine method.By simulation,the numerical experiments shows that the Least Squares Support Vector Machine method is one of the powerful methods for the parameter identification to compute the damage entropy of the condense heat,with the largest training error being-0.025(the relative error being-3.56%),and the biggest test error being 0.015(the relative error being 2.5%).
文摘The frost growth on cold surfaces in evaporators is an undesirable phenomenon which becomes a problem for the thermal efficiency of the refrigeration systems because the ice layer acts as a thermal insulation,drastically reducing the rate of heat transfer in the system.Its accumulation implies an increase in energy demand and a decrease in the performance of various components involved in the refrigeration process,reducing its efficiency and making it necessary to periodically remove the frost,resulting in expenses for the defrost process.In the present work,a numerical-experimental analysis was performed in order to understand the formation process of porous ice in flat plates with different surface treatments and parameters.This understanding is of utmost importance to minimize the formation of porous ice on cold surfaces and improve equipment efficiency and performance.In this context,a low-cost experimental apparatus was developed,enabling an experimental analysis of the phenomenon under study.The environmental conditions evaluated are the temperature of the cold surface,roomtemperature,humidity,and air velocity.The material of the surfaces under study are aluminum,copper,and brass with different surface finishes,designated as smooth,grooved(hydrophilic),and varnished(hydrophobic).The numerical-experimental analysis demonstrates measurements and simulations of the thickness,surface temperature,and growth rate of the porous ice layer as a function of the elapsed time.The numerical results were in good agreement with the experimental results,indicating that the varnished surface,with hydrophobic characteristics,presents greater difficulty in providing the phenomenon.Therefore,the results showed that application of a coating allowed a significant reduction on the frost formation process contributing to the improvement of thermal efficiency and performance of refrigeration systems.
基金Supported by the National Natural Science Foundation of China(21676183)
文摘The optimal design of a compression refrigeration system(CRS) with multiple temperature levels is very important to chemical process industries and also represents considerable challenges in process systems engineering. In this paper, a general methodology for the optimal synthesis of the CRS, which simultaneously integrates CRS and Heat Exchanger Networks(HEN) to minimize the total compressor shaft work consumption based on an MINLP model, has been proposed. The major contribution of this method is in addressing the optimal design of refrigeration cycle with variable refrigeration temperature levels. The method can be used to make major decisions in the CRS design, such as the number of levels, temperature levels, and heat transfer duties. The performance of the developed methodology has been illustrated with a case study of an ethylene CRS in an industrial ethylene plant, and the optimal solution has been examined by rigorous simulations in Aspen Plus to verify its feasibility and consistency.
基金Supported by the National Natural Science Foundation of China(No.51175448,51405424)
文摘Different from the traditional hydraulic oil cooling method,a new type of constant temperature oil tank cooling system based on semiconductor refrigeration technology is designed. This paper studies the principle of semiconductor refrigeration and establishes a heat transfer model. Semiconductor cooler on piping refrigeration is simulated,and influence of the parameters on the outlet temperature,such as pipe pressure difference of inlet and outlet,pipe length,pipe radius,are gotten,and then hydraulic tank semiconductor refrigeration system is proposed. The semiconductor refrigeration system can control temperature at 37 ± 1°C.
基金supported by the National Natural Science Foundation of China(21978203)the Natural Science Foundation of Tianjin(19JCYBJC20300)。
文摘Simultaneous optimization of refrigeration system(RS)and its heat exchanger network(HEN)leads to a large-scale non-convex mixed-integer non-linear programming(MINLP)problem.Conventionally,researchers usually adopted simplifications to confine problem scale from being too large at the cost of reducing solution space.This study established an optimization framework for the simultaneous optimization of RS and HEN.Firstly,A more comprehensive and compact model was developed to guarantee a relatively complete solution space while reducing model scale as well as its solving difficulty.In this model,a tandem arrangement of connecting sub-coolers and expansion valves was considered in the superstructure;and the pressure/temperature levels were optimized as continuous variables.On this basis,we proposed a"two-step transformation method"to equivalently transform the cross-level structure into a no n-cross-level structu re,and the de-redundant superstructu re was established with ensuring comprehensiveness and rigor.Furthermore,the MINLP model was developed and solved by Particle Swarm Optimization algorithm.Finally,our methodology was validated to get better optimal results with less CPU time in two case studies,an ethylene RS in an existing plant and a reported propylene RS.
文摘High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-performing server systems pose an immense thermal challenge for cooling. The use of refrigerants as a direct-to-chip cooling method is investigated as a potential cooling solution for cooling AI chips. Using a vapor compression refrigeration system (VCRS), the coolant temperature will be sub-ambient thereby increasing the total cooling capacity. Coupled with the implementation of a direct-to-chip boiler, using refrigerants to cool AI server systems can materialize as a potential solution for current AI server cooling demands. In this study, a comparison of 8 different refrigerants: R-134a, R-153a, R-717, R-508B, R-22, R-12, R-410a, and R-1234yf is analyzed for optimal performance. A control theoretical VCRS model is created to assess variable refrigerants under the same operational conditions. From this model, the coefficient of performance (COP), required mass flow rate of refrigerant, work required by the compressor, and overall heat transfer coefficient is determined for all 8 refrigerants. Lastly, a comprehensive analysis is provided to determine the most optimal refrigerants for cooling applications. R-717, commonly known as Ammonia, was found to have the highest COP value thus proving to be the optimal refrigerant for cooling AI chips and high-performing server applications.
文摘By means of the Second Law of Thermodynamics,thispaper gives out the entropy analysis method for vapor-comperession refrigeration system.The thermal irrevers-ibility of the system charged with R12 and its hopeful al-ternative refrlgerant R134a have been studied respective-ly.On the basis of all the research results of this paper,the measure used to save energy for vapor-compressionrefrigeration system has been put out.
文摘The airborne high power electrical equipments have been widely used in modern aircrafts , which consequently causes the dramatic increase of heating load up to dozens of kilowatts.Accordingly , vapor-compression refrigeration system ( VCRS ) with lower engine bleed air and larger refrigeration capacity has been paid much attention in recent years.Therefore , based on the analysis of the characteristics of VCRS , an experiment system of VCRS using R134ais set up to simulate operation performances.The influences of different parameters including evaporation pressure , condensing pressure , refrigerant mass flow rate and compressor rotation speed are also investigated.The impacts of different parameters on the system performance are various.This work can help to establish the specific control law under different work conditions.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘An open loop cycle carbon dioxide(CO2)refrigeration system is established,and the cooling performances of high-pressure CO2 under different storage conditions(25℃,30℃,and 35℃)are investigated.Moreover,the experimental mass flow rates of CO2 are compared with the theoretical values at different conditions and refrigeration capacities.The results indicate that the storage condition of CO2 has a significant impact on the refrigeration performance,and the mass flow rate of CO2 increases with the increasing storage temperature in a given refrigeration capacity.
文摘In the present study, the ice slurry refrigeration system with pre-cooling heat exchanger (ISSH) is studied experimentally to achieve the system performance, ice crystal formation time and the temperature of ice crystal formation. The operating parameters considered in this paper include the concentration of salt solution, suction pressure, discharge pressure and Energy Efficiency Ratio (EER). The result shows that the temperature of critical time of ice crystal formation decreases with the increasing concentration of salt solution and that the ice crystal formation time increases with the increasing concentration of salt solution. In the same concentration of salt solution, the ice crystal formation temperature of ISSH is lower than that of basic ice slurry refrigeration system (BISS), and the ice crystal formation time of ISSH is shorter than that of BISS. On the whole, the EER of ice slurry refrigeration system with pre-cooling heat exchanger is higher than that of basic ice slurry refrigeration system.
基金Xi'an Polytechnic University Graduate Innovational Foundation(chx080608)
文摘The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analyzed.The test shows that making full use of the evaporative cooling "free cooling" in Spring and Autumn seasons can fully meet the requirements of air-conditioned comfort through the switch of the function in different seasons.Taking into account the evaporative cooling fan and pump energy consumption,compared with the traditional mechanical refrigeration system,more than 80 percent of energy can be saved,and the energy efficiency ratio of the Unit(EER)is as high as 7.63.Using the two stages of indirect evaporative cooling to pre-cool the new wind in summer,under the conditions of the same air supply temperature requirements,0.83 kg/s chilled water saved can be equivalent to the traditional mechanical refrigeration system,and when the new wind ratio up to 50 percent,more than 10 percent load was reduced in mechanical refrigeration system.The overall EER increased about 35 percent.
基金Project supported by the National Natural Science Foundation of China (Grant No 10465003) and the Natural Science Foundation of Jiangxi Province, China (Grant No 0412011).
文摘A new model of a quantum refrigeration cycle composed of two adiabatic and two isomagnetic field processes is established. The working substance in the cycle consists of many non-interacting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semi-group approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate, and power input, are given. It is found that the coefficient of performance of this cycle is in the closest analogy to that of the classical Carnot cycle. Furthermore, at high temperatures the optimal relations of the cooling rate and the maximum cooling rate are analysed in detail. Some performance characteristic curves of the cycle are plotted, such as the cooling rate versus the maximum ratio between high and low "temperatures" of the working substances, the maximum cooling rate versus the ratio between high and low "magnetic fields" and the "temperature" ratio between high and low reservoirs. The obtained results are further generalized and discussed, so that they may be directly applied to describing the performance of the quantum refrigerator using spin-J systems as the working substance. Finally, the optimum characteristics of the quantum Carnot and Ericsson refrigeration cycles are derived by analogy.
文摘Solid adsorption system, one of alternative refrigeration systems, is utilized to provide cold for refrigerator or air-conditioner and can be operated by assistance of solar heat. System performance study through computer usage to develop simulation program and simulate behaviors of system operation can give designed system which suits for user’s need. Also, the present study aims to develop dynamic simulation program of solid adsorption refrigeration system operated by solar assistance to simulate behaviors of system operation and its performance. Flat plate collectror is utilized to provide thermal energy for system’s adsorber and activated carbon/methanol is used to be a suitable working pair. Simulation procedure starts with various solar radiation intensities as input energy on solar collector and water is used as collector working fluid. Behavior of system operation can be considered to be 4 steps as isosteric heating, isobaric desorption, isosteric cooling and isobaric adsorption, respectively. This research studies the effect of varying solar radiation intensity on temperature, pressure of adsorber, adsorption ratio at each steps of system operated ranging from 6:00 am (the first day) to 6:00 am (the next day) and system performance which is defined as coefficient of performance, COP. In addition, the simulation result shows monthly average COP of 0.43 compared to a result of another previous research work under the same operating condition and the percentage error is 7.5%.