期刊文献+
共找到18,420篇文章
< 1 2 250 >
每页显示 20 50 100
Air interaction around outdoor air-cooled condensers 被引量:1
1
作者 王树刚 张腾飞 张剑 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期222-226,共5页
In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is est... In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully. 展开更多
关键词 air-cooled condensers flow interaction heat transfer optimization computational fluid dynamics(CFD) MEASUREMENT
下载PDF
Precipitation of α_2 Phase in α+β Solution-Treated and Air-cooled Ti-Al-Sn-Zr-Mo-Si-Nd Alloys 被引量:5
2
作者 Jun ZHANG and Dong LI Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China resent address: Shenyang University, Shenyang 110044, China E-mail: zhjun14@mailcity.com 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第3期315-317,共3页
A series of Ti-Al-Sn-Zr-Mo-Si-Nd alloys with various content of Al were solution treated in α+β phase field and air-cooled. The precipitation of a2 phase in cooling was investigated by transmission electron microsco... A series of Ti-Al-Sn-Zr-Mo-Si-Nd alloys with various content of Al were solution treated in α+β phase field and air-cooled. The precipitation of a2 phase in cooling was investigated by transmission electron microscopic analysis The precipitation characteristic of α2 phase was discussed. The precipitation of α2 phase would proceed by the nucleation and growth of α2 phase dependent on the diffusion of Al atoms. And a comparison on the difference of precipitation of α2 phase was carried out under the conditions of air-cooling and quenching in water. The investigation showed that the air-cooling and even quenching could supply enough time for the precipitation and growth of α2 phase when Al content reached a certain value even though far away from the stoichiometric composition of Ti3Al. 展开更多
关键词 Al Precipitation of Phase in Solution-Treated and air-cooled Ti-Al-Sn-Zr-Mo-Si-Nd Alloys Ti Mo Sn ZR ND Si
下载PDF
Microstructure and properties of rheo-HPDC Al-8Si alloy prepared by air-cooled stirring rod process 被引量:5
3
作者 Ming-fan QI Yong-lin KANG Guo-ming ZHU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第9期1939-1946,共8页
A new and effective semisolid slurry preparation process with air-cooled stirring rod(ACSR)is reported,in which the compressed air is constantly injected into the inner cavity of a stirring rod to cool the melt.The sl... A new and effective semisolid slurry preparation process with air-cooled stirring rod(ACSR)is reported,in which the compressed air is constantly injected into the inner cavity of a stirring rod to cool the melt.The slurry of a newly developed high thermal conductivity Al?8Si alloy was prepared,and thin-wall heat dissipation shells were produced by the ACSR process combined with a HPDC machine.The effects of the air flow on the morphology ofα1-Al particles,mechanical properties and thermal conductivity of rheo-HPDC samples were studied.The results show that the excellent slurry of the alloy could be obtained with the air flow exceeding3L/s.Rheo-HPDC samples that were produced with the air flow of5L/s had the maximum UTS,YS,elongation,hardness and thermal conductivity of261MPa,124MPa,4.9%,HV99and153W/(m·K),respectively.Rheo-HPDC samples show improved properties compared to those formed by HPDC,and the increasing rates of UTS,YS,elongation,hardness and thermal conductivity were20%,15%,88%,13%and10%,respectively. 展开更多
关键词 rheo-HPDC Al.8Si alloy air-cooled stirring rod microstructure mechanical properties thermal conductivity
下载PDF
Effect of Chromium on CCT Diagrams of Novel Air-Cooled Bainite Steels Analyzed by Neural Network 被引量:4
4
作者 YOU Wei XU Wei-hong +2 位作者 LIU Ya-xiu BAI Bing-zhe FANG Hong-sheng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第4期39-42,共4页
The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the c... The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the chromium may retard the high and medium-temperature martensite transformation. 展开更多
关键词 novel air-cooled bainite steel CCT diagram artificial neural network chromium content quantitative effect
下载PDF
Feasibility Analysis of Back-Pressure Steam Feeding Water Pump for Direct Air-Cooled Unit 被引量:1
5
作者 Zhao Xiaodong Wang Meng +2 位作者 Du Xiaoze Yang Lijun Yang Yongping 《Electricity》 2013年第1期31-35,共5页
As the performance of an air-cooled condenser is apt to be affected by the fluctuating ambient condition, some difficulties are brought to the use of a steam feeding water pump in an air-cooled unit. This paper introd... As the performance of an air-cooled condenser is apt to be affected by the fluctuating ambient condition, some difficulties are brought to the use of a steam feeding water pump in an air-cooled unit. This paper introduces a new design of for steam feeding the water pump of an air-cooled unit using the back-pressure steam turbine as the prime motor. Using variable condition analysis on a 600 MW direct air-cooled unit, and with consideration of the effect on the ambient conditions, the feasibility, economy, and adaptability of the design are verified. 展开更多
关键词 air-cooled back-pressure steam turbine steam feed water pump variable condition
下载PDF
Application of Air-cooled Blast Furnace Slag Aggregates as Replacement of Natural Aggregates in Cement-based Materials:A Study on Water Absorption Property 被引量:1
6
作者 王爱国 liu peng +3 位作者 liu kaiwei li yan zhang gaozhan 孙道胜 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期445-451,共7页
The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregat... The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively. 展开更多
关键词 air-cooled blast furnace slag aggregate cement-based materials water absorption coefficient interface structure
下载PDF
Physical Properties of Crushed Air-cooled Blast Furnace Slag and Numerical Representation of Its Morphology Characteristics 被引量:1
7
作者 王爱国 邓敏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期973-978,共6页
Physical properties and geometrical morphologies of crushed air-cooled blast furnace slag (SCR) and crushed limestone (LCR) were comparatively investigated. The shape, angularity, surface texture and internal pore... Physical properties and geometrical morphologies of crushed air-cooled blast furnace slag (SCR) and crushed limestone (LCR) were comparatively investigated. The shape, angularity, surface texture and internal pore structure of aggregate particles for different size and gradation were numerically represented by sphericity (ψ) and shape index (SI), angularity number (AN), index of aggregate particle shape and texture (IAPST), porosity and pore size, respectively. The results show that SCR is a porous and rough aggregate. Apparent density, void, water absorption and smashing index of SCR are obviously higher than those of LCR with the same gradation, respectively. However, bulk density of SCR is lower than that of LCR with the same gradation. SI, AN, IAPST and porosity of SCR are obviously higher than those of LCR with the same gradation, respectively. The smaller particle size of SCR, the larger of its AN, IAPST and porosity. 展开更多
关键词 crushed air-cooled blast furnace slag crushed limestone physical property morphology characteristic numerical representation
下载PDF
Thermodynamic Simulation of CCP in Air-Cooled Heat Pump Unit with HFCs and CO<sub>2</sub>Trans-Critical 被引量:2
8
作者 Feihu Chen Shuguang Liao Guangcai Gong 《Journal of Power and Energy Engineering》 2018年第9期141-164,共24页
The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit ... The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit is about 1 kW, and the work refrigerant is R22/R407C/R410A/CO2. The MATLAB/SIMULINK software was employed to build the simulation model. The thermodynamic simulation model is significant for the optimization of parameters of the unit, such as condensation and evaporation temperature and mass flow of the sanitary hot water and size of hot water storage tank. The COP of the CCP of R410A system is about 3% - 5% higher than the CCP of the R22 system, while CCP of the R407C system is a little lower than the CCP of R22 system. And the CCP of CO2 trans-critical system has advantage in the hot supply mode. The simulation method provided a theoretical reference for developing the production of CCP with substitute refrigerant R407C/R410A/CO2. 展开更多
关键词 air-cooled Heat Pump Unit Compound Condensation Process (CCP) Exergy Analysis Method Sanitary Hot Water MATLAB/SIMULINK Software Fluorine SUBSTITUTE REFRIGERANT R407C/R410A Natural REFRIGERANT CO2
下载PDF
Mechanism of internal thermal runaway propagation in blade batteries 被引量:3
9
作者 Xuning Feng Fangshu Zhang +3 位作者 Wensheng Huang Yong Peng Chengshan Xu Minggao Ouyang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期184-194,I0005,共12页
Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propaga... Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell.The results showed that the internal thermal runaway could propagate for up to 272 s,which is comparable to that of a traditional battery module.The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s^(-1),depending on both the electrolyte content and high-temperature gas diffusion.In the early stages of thermal runaway,the electrolyte participated in the reaction,which intensified the thermal runaway and accelerated its propagation.As the battery temperature increased,the electrolyte evaporated,which attenuated the acceleration effect.Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer.The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%.We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%-17.06%.Finally,the temperature rate curve was analyzed,and a three-stage mechanism for internal thermal runaway propagation was proposed.In Stage I,convective heat transfer from electrolyte evaporation locally increased the temperature to 100℃.In Stage II,solid heat transfer locally increases the temperature to trigger thermal runaway.In StageⅢ,thermal runaway sharply increases the local temperature.The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design. 展开更多
关键词 Lithium-ion battery blade battery Thermal runaway Internal thermal runaway propagation
下载PDF
Effect of Crushed Air-cooled Blast Furnace Slag on Mechanical Properties of Concrete
10
作者 王爱国 邓敏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第4期758-762,共5页
Morphology characteristics of mix aggregates with crushed air-cooled blast furnace slag(SCR) and crushed limestone(LCR) with 5-20 mm and 20-40 mm gradation were represented by numerical parameters including angula... Morphology characteristics of mix aggregates with crushed air-cooled blast furnace slag(SCR) and crushed limestone(LCR) with 5-20 mm and 20-40 mm gradation were represented by numerical parameters including angularity number(AN) and index of aggregate particle shape and texture(IAPST).The effect of mix aggregates containing SCR on compressive strength and splitting tensile strength of concrete was investigated.Fracture characteristics of concrete,interfacial structure between aggregates and matrix were analyzed.The experimental results show that porous and rough SCR increases contact area with matrix in concrete,concave holes and micro-pores on the surface of SCR are filled by mortar and hydrated cement paste,which may increase interlocking and mechanical bond between aggregate and matrix in concrete.SCR can be used to produce a high-strength concrete with better mechanical properties than corresponding concrete made with LCR.The increase of AN and IAPST of aggregate may enhance mechanical properties of concrete. 展开更多
关键词 crushed air-cooled blast furnace slag crushed limestone mechanical property morphology characteristic interfacial structure
下载PDF
Quantitative analysis of Ni effect on CCT diagrams of novel air-cooled bainite steels using artificial neural network models
11
作者 Weihong Xu Wei You +2 位作者 Yaxiu Liu Bingzhe Bai Hongsheng Fang 《Journal of University of Science and Technology Beijing》 CSCD 2005年第5期410-415,共6页
The quantitative effect of Ni content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels was analyzed using artificial neural network models. The results showed that Ni may retard... The quantitative effect of Ni content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels was analyzed using artificial neural network models. The results showed that Ni may retard the high- and medium-temperature transformation and martensite transformation. The results conform to the materials science theories. 展开更多
关键词 novel air-cooled bainite steels NICKEL CCT diagrams artificial neural network
下载PDF
The Experimental Investigation of Recirculation of Air-Cooled System for a Large Power Plant
12
作者 Wanli Zhao Qiyue Wang Peiqing Liu 《Energy and Power Engineering》 2010年第4期291-297,共7页
The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV... The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV experiments are carried out and recirculation ratio of each condition is calculated. Results show that the thermal flow field of the cooling tower has great influence on the recirculation under the cooling tower. Ameliorating the thermal flow field of the cooling tower can reduce the recirculation under the cooling tower and improve the efficiency of air-cooled condenser also. 展开更多
关键词 DIRECT air-cooled CONDENSER Thermal Flow Field Recirculation PIV EXPERIMENT Power PLANT
下载PDF
Influence of thermal flow field of cooling tower on recirculation ratio of a direct air-cooled system for a power plant
13
作者 Zhao Wanli Liu Peiqing 《Engineering Sciences》 EI 2008年第4期64-70,共7页
In order to get thermal flow field of direct air-cooled system,the hot water was supplied to the model of direct air-cooled condenser(ACC). The particle image velocimetery (PIV) experiments were carried out to get the... In order to get thermal flow field of direct air-cooled system,the hot water was supplied to the model of direct air-cooled condenser(ACC). The particle image velocimetery (PIV) experiments were carried out to get thermal flow field of a ACC under different conditions in low velocity wind tunnel,at the same time,the recirculation ratio at cooling tower was measured,so the relationship between flow field characteristics and recirculation ratio of cooling tower can be discussed. From the results we can see that the flow field configuration around cooling tower has great effects on average recirculation ratio under cooling tower. The eddy formed around cooling tower is a key reason that recirculation produces. The eddy intensity relates to velocity magnitude and direction angle,and the configuration of eddy lies on the geometry size of cooling tower. So changing the flow field configuration around cooling tower reasonably can decrease recirculation ratio under cooling tower,and heat dispel effect of ACC can also be improved. 展开更多
关键词 direct air-cooled condenser thermal flow field characteristics recirculation ratio PIV experiment
下载PDF
Water, Air Emissions, and Cost Impacts of Air-Cooled Microturbines for Combined Cooling, Heating, and Power Systems: A Case Study in the Atlanta Region
14
作者 Jean-Ann James Valerie M. Thomas +2 位作者 Arka Pandit Duo Li John C. Crittenden 《Engineering》 SCIE EI 2016年第4期470-480,共11页
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po... The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings. 展开更多
关键词 Combined cooling heating and power (CCHP) air-cooled microturbines Distributed energy generation Water for energy production Net metering
下载PDF
Optimized Design of Bio-Inspired Wind Turbine Blades
15
作者 Yuanjun Dai Dong Wang +1 位作者 Xiongfei Liu Weimin Wu 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1647-1664,共18页
To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extracti... To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extraction method of blade elements is employed for the optimization design of the considered wind turbine blades.Moreover,Computational Fluid Dynamics(CFD)is used to determine the aerodynamic performances of the eagle airfoil and a NACA2412 airfoil,thereby demonstrating the superior aerodynamic performance of the former.Finally,a mathematical model for optimizing the design of wind turbine blades is introduced and a comparative analysis is conducted with respect to the aerodynamic performances of blades designed using a uniform extraction approach.It is found that the blades designed using non-uniform extraction exhibit better aerodynamic performance. 展开更多
关键词 AIRFOIL wind turbines blade design CFD
下载PDF
Research on Automatic Test System of Engine Blade Natural Frequency
16
作者 LU Yonghua LIU Jingjing +2 位作者 YANG Haibo HUANG Chuan MA Zhicheng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期476-487,共12页
Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequ... Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequency before installing them on the engine to avoid resonance.At present,most blade vibration testing systems require manual operation by operators,which has high requirements for operators and the testing process is also very cumbersome.Therefore,the testing efficiency is low and cannot meet the needs of efficient testing.To solve the current problems of low testing efficiency and high operational requirements,a high-precision and high-efficiency automatic test system is designed.The testing accuracy of this system can reach ±1%,and the testing efficiency is improved by 37% compared to manual testing.Firstly,the influence of compression force and vibration exciter position on natural frequency test is analyzed by amplitude-frequency curve,so as to calibrate servo cylinder and fourdimensional motion platform.Secondly,the sine wave signal is used as the excitation to sweep the blade linearly,and the natural frequency is determined by the amplitude peak in the frequency domain.Finally,the accuracy experiment and efficiency experiment are carried out on the developed test system,whose results verify its high efficiency and high precision. 展开更多
关键词 blade vibration failure natural frequency automatic test system
下载PDF
Research on the Icing Diagnosis ofWind Turbine Blades Based on FS–XGBoost–EWMA
17
作者 Jicai Guo Xiaowen Song +5 位作者 Chang Liu Yanfeng Zhang Shijie Guo JianxinWu Chang Cai Qing’an Li 《Energy Engineering》 EI 2024年第7期1739-1758,共20页
In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily re... In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily rely on sensor monitoring,which is expensive and has limited applications.Data-driven blade icing detection methods have become feasible with the development of artificial intelligence.However,the data-driven method is plagued by limited training samples and icing samples;therefore,this paper proposes an icing warning strategy based on the combination of feature selection(FS),eXtreme Gradient Boosting(XGBoost)algorithm,and exponentially weighted moving average(EWMA)analysis.In the training phase,FS is performed using correlation analysis to eliminate redundant features,and the XGBoost algorithm is applied to learn the hidden effective information in supervisory control and data acquisition analysis(SCADA)data to build a normal behavior model.In the online monitoring phase,an EWMA analysis is introduced to monitor the abnormal changes in features.A blade icing warning is issued when themonitored features continuously exceed the control limit,and the ambient temperature is below 0℃.This study uses data fromthree icing-affected wind turbines and one normally operating wind turbine for validation.The experimental results reveal that the strategy can promptly predict the icing trend among wind turbines and stably monitor the normally operating wind turbines. 展开更多
关键词 Wind turbine blade icing feature selection XGBoost EWMA
下载PDF
Numerical simulation on directional solidification and heat treatment processes of turbine blades
18
作者 Ye-yuan Hu Ju-huai Ma Qing-yan Xu 《China Foundry》 SCIE EI CAS CSCD 2024年第5期476-490,共15页
Study on turbine blades is crucial due to their critical role in ensuring the efficient and reliable operation of aircraft engines.Nickel-based single crystal superalloys are extensively used in the hot manufacturing ... Study on turbine blades is crucial due to their critical role in ensuring the efficient and reliable operation of aircraft engines.Nickel-based single crystal superalloys are extensively used in the hot manufacturing of turbine blades due to their exceptional high-temperature mechanical properties.The hot manufacturing of single crystal blades involves directional solidification and heat treatment.Experimental manufacturing of these blades is time-consuming,capital-intensive,and often insufficient to meet industrial demands.Numerical simulation techniques have gained widespread acceptance in blade manufacturing research due to their low energy consumption,high efficiency,and rapid turnaround time.This article introduces the modeling and simulation of hot manufacturing in single crystal blades.The discussion outlines the prevalent mathematical models employed in numerical simulations related to blade hot manufacturing.It encapsulates the advancements in research concerning macro to micro-level numerical simulation techniques for directional solidification and heat treatment processes.Furthermore,potential future trajectories for the numerical simulation of single crystal blade hot manufacturing are also discussed. 展开更多
关键词 single crystal blades Ni-based superalloy directional solidification heat treatment numerical simulation
下载PDF
Blade Wrap Angle Impact on Centrifugal Pump Performance:Entropy Generation and Fluid-Structure Interaction Analysis
19
作者 Hayder Kareem Sakran Mohd Sharizal Abdul Aziz Chu Yee Khor 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期109-137,共29页
The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to anal... The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69.This study investigates six impellermodels that possess varying blade wrap angles(95°,105°,115°,125°,135°,and 145°)that were created while maintaining the same volute and other geometrical characteristics.The investigation of energy loss was conducted to evaluate the values of total and entropy generation rates(TEG,EGR).The fluid-structure interaction was considered numerically using the software tools ANSYS Fluent and ANSYSWorkbench.The elastic structural dynamic equation was used to estimate the structural response,while the shear stress transport k–ωturbulence model was utilized for the fluid domain modeling.The findings suggest that the blade wrap angle has a significant influence on the efficiency of the pump.The impeller featuring a blade wrap angle of 145°exhibits higher efficiency,with a notable increase of 3.76%relative to the original model.Variations in the blade wrap angle impact the energy loss,shaft power,and pump head.The model with a 145°angle exhibited a maximum equivalent stress of 14.8MPa and a total deformation of 0.084 mm.The results provide valuable insights into the intricate flow mechanism of the centrifugal pump,particularly when considering various blade wrap angles. 展开更多
关键词 Centrifugal pump blade wrap angle entropy generation theory fluid-structure interaction hydraulic performance
下载PDF
Data-Driven Modeling for Wind Turbine Blade Loads Based on Deep Neural Network
20
作者 Jianyong Ao Yanping Li +2 位作者 Shengqing Hu Songyu Gao Qi Yao 《Energy Engineering》 EI 2024年第12期3825-3841,共17页
Blades are essential components of wind turbines.Reducing their fatigue loads during operation helps to extend their lifespan,but it is difficult to quickly and accurately calculate the fatigue loads of blades.To solv... Blades are essential components of wind turbines.Reducing their fatigue loads during operation helps to extend their lifespan,but it is difficult to quickly and accurately calculate the fatigue loads of blades.To solve this problem,this paper innovatively designs a data-driven blade load modeling method based on a deep learning framework through mechanism analysis,feature selection,and model construction.In the mechanism analysis part,the generation mechanism of blade loads and the load theoretical calculationmethod based on material damage theory are analyzed,and four measurable operating state parameters related to blade loads are screened;in the feature extraction part,15 characteristic indicators of each screened parameter are extracted in the time and frequency domain,and feature selection is completed through correlation analysis with blade loads to determine the input parameters of data-driven modeling;in the model construction part,a deep neural network based on feedforward and feedback propagation is designed to construct the nonlinear coupling relationship between the unit operating parameter characteristics and blade loads.The results show that the proposed method mines the wind turbine operating state characteristics highly correlated with the blade load,such as the standard deviation of wind speed.The model built using these characteristics has reasonable calculation and fitting capabilities for the blade load and shows a better fitting level for untrained out-of-sample data than the traditional scheme.Based on the mean absolute percentage error calculation,the modeling accuracy of the two blade loads can reach more than 90%and 80%,respectively,providing a good foundation for the subsequent optimization control to suppress the blade load. 展开更多
关键词 Wind turbine blade fatigue load modeling deep neural network
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部