期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Air interaction around outdoor air-cooled condensers 被引量:1
1
作者 王树刚 张腾飞 张剑 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期222-226,共5页
In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is est... In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully. 展开更多
关键词 air-cooled condensers flow interaction heat transfer optimization computational fluid dynamics(CFD) MEASUREMENT
下载PDF
Precipitation of α_2 Phase in α+β Solution-Treated and Air-cooled Ti-Al-Sn-Zr-Mo-Si-Nd Alloys 被引量:5
2
作者 Jun ZHANG and Dong LI Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China resent address: Shenyang University, Shenyang 110044, China E-mail: zhjun14@mailcity.com 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第3期315-317,共3页
A series of Ti-Al-Sn-Zr-Mo-Si-Nd alloys with various content of Al were solution treated in α+β phase field and air-cooled. The precipitation of a2 phase in cooling was investigated by transmission electron microsco... A series of Ti-Al-Sn-Zr-Mo-Si-Nd alloys with various content of Al were solution treated in α+β phase field and air-cooled. The precipitation of a2 phase in cooling was investigated by transmission electron microscopic analysis The precipitation characteristic of α2 phase was discussed. The precipitation of α2 phase would proceed by the nucleation and growth of α2 phase dependent on the diffusion of Al atoms. And a comparison on the difference of precipitation of α2 phase was carried out under the conditions of air-cooling and quenching in water. The investigation showed that the air-cooling and even quenching could supply enough time for the precipitation and growth of α2 phase when Al content reached a certain value even though far away from the stoichiometric composition of Ti3Al. 展开更多
关键词 Al Precipitation of Phase in Solution-Treated and air-cooled Ti-Al-Sn-Zr-Mo-Si-Nd Alloys Ti Mo Sn ZR ND Si
下载PDF
Microstructure and properties of rheo-HPDC Al-8Si alloy prepared by air-cooled stirring rod process 被引量:5
3
作者 Ming-fan QI Yong-lin KANG Guo-ming ZHU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第9期1939-1946,共8页
A new and effective semisolid slurry preparation process with air-cooled stirring rod(ACSR)is reported,in which the compressed air is constantly injected into the inner cavity of a stirring rod to cool the melt.The sl... A new and effective semisolid slurry preparation process with air-cooled stirring rod(ACSR)is reported,in which the compressed air is constantly injected into the inner cavity of a stirring rod to cool the melt.The slurry of a newly developed high thermal conductivity Al?8Si alloy was prepared,and thin-wall heat dissipation shells were produced by the ACSR process combined with a HPDC machine.The effects of the air flow on the morphology ofα1-Al particles,mechanical properties and thermal conductivity of rheo-HPDC samples were studied.The results show that the excellent slurry of the alloy could be obtained with the air flow exceeding3L/s.Rheo-HPDC samples that were produced with the air flow of5L/s had the maximum UTS,YS,elongation,hardness and thermal conductivity of261MPa,124MPa,4.9%,HV99and153W/(m·K),respectively.Rheo-HPDC samples show improved properties compared to those formed by HPDC,and the increasing rates of UTS,YS,elongation,hardness and thermal conductivity were20%,15%,88%,13%and10%,respectively. 展开更多
关键词 rheo-HPDC Al.8Si alloy air-cooled stirring rod microstructure mechanical properties thermal conductivity
下载PDF
Effect of Chromium on CCT Diagrams of Novel Air-Cooled Bainite Steels Analyzed by Neural Network 被引量:4
4
作者 YOU Wei XU Wei-hong +2 位作者 LIU Ya-xiu BAI Bing-zhe FANG Hong-sheng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第4期39-42,共4页
The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the c... The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the chromium may retard the high and medium-temperature martensite transformation. 展开更多
关键词 novel air-cooled bainite steel CCT diagram artificial neural network chromium content quantitative effect
下载PDF
Feasibility Analysis of Back-Pressure Steam Feeding Water Pump for Direct Air-Cooled Unit 被引量:1
5
作者 Zhao Xiaodong Wang Meng +2 位作者 Du Xiaoze Yang Lijun Yang Yongping 《Electricity》 2013年第1期31-35,共5页
As the performance of an air-cooled condenser is apt to be affected by the fluctuating ambient condition, some difficulties are brought to the use of a steam feeding water pump in an air-cooled unit. This paper introd... As the performance of an air-cooled condenser is apt to be affected by the fluctuating ambient condition, some difficulties are brought to the use of a steam feeding water pump in an air-cooled unit. This paper introduces a new design of for steam feeding the water pump of an air-cooled unit using the back-pressure steam turbine as the prime motor. Using variable condition analysis on a 600 MW direct air-cooled unit, and with consideration of the effect on the ambient conditions, the feasibility, economy, and adaptability of the design are verified. 展开更多
关键词 air-cooled back-pressure steam turbine steam feed water pump variable condition
下载PDF
Application of Air-cooled Blast Furnace Slag Aggregates as Replacement of Natural Aggregates in Cement-based Materials:A Study on Water Absorption Property 被引量:1
6
作者 王爱国 liu peng +3 位作者 liu kaiwei li yan zhang gaozhan 孙道胜 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期445-451,共7页
The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregat... The influence of air-cooled blast furnace slag aggregates as replacement of natural aggregates on the water absorption of concrete and mortar was studied, and the mechanism was analyzed. The interface between aggregate and matrix in concrete was analyzed by using a micro-hardness tester, a laser confocal microscope and a scanning electron microscope with backscattered electron image mode. The pore structure of mortar matrixes under different curing conditions was investigated by mercury intrusion porosimetry. The results showed that when natural aggregates were replaced with air-cooled blast furnace slag aggregates in mortar or concrete, the content of the capillary pore in the mortar matrix was reduced and the interfacial structure between aggregate and matrix was improved, resulting in the lower water absorption of mortar or concrete. Compared to the concrete made with crushed limestone and natural river sand, the initial absorption coefficient, the secondary absorption coefficient and the water absorption capacity through the surface for 7 d of the concrete made from crushed air-cooled blast furnace slag and air-cooled blast furnace slag sand were reduced by 48.9%, 52.8%, and 46.5%, respectively. 展开更多
关键词 air-cooled blast furnace slag aggregate cement-based materials water absorption coefficient interface structure
下载PDF
Physical Properties of Crushed Air-cooled Blast Furnace Slag and Numerical Representation of Its Morphology Characteristics 被引量:1
7
作者 王爱国 邓敏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期973-978,共6页
Physical properties and geometrical morphologies of crushed air-cooled blast furnace slag (SCR) and crushed limestone (LCR) were comparatively investigated. The shape, angularity, surface texture and internal pore... Physical properties and geometrical morphologies of crushed air-cooled blast furnace slag (SCR) and crushed limestone (LCR) were comparatively investigated. The shape, angularity, surface texture and internal pore structure of aggregate particles for different size and gradation were numerically represented by sphericity (ψ) and shape index (SI), angularity number (AN), index of aggregate particle shape and texture (IAPST), porosity and pore size, respectively. The results show that SCR is a porous and rough aggregate. Apparent density, void, water absorption and smashing index of SCR are obviously higher than those of LCR with the same gradation, respectively. However, bulk density of SCR is lower than that of LCR with the same gradation. SI, AN, IAPST and porosity of SCR are obviously higher than those of LCR with the same gradation, respectively. The smaller particle size of SCR, the larger of its AN, IAPST and porosity. 展开更多
关键词 crushed air-cooled blast furnace slag crushed limestone physical property morphology characteristic numerical representation
下载PDF
Thermodynamic Simulation of CCP in Air-Cooled Heat Pump Unit with HFCs and CO<sub>2</sub>Trans-Critical 被引量:2
8
作者 Feihu Chen Shuguang Liao Guangcai Gong 《Journal of Power and Energy Engineering》 2018年第9期141-164,共24页
The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit ... The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit is about 1 kW, and the work refrigerant is R22/R407C/R410A/CO2. The MATLAB/SIMULINK software was employed to build the simulation model. The thermodynamic simulation model is significant for the optimization of parameters of the unit, such as condensation and evaporation temperature and mass flow of the sanitary hot water and size of hot water storage tank. The COP of the CCP of R410A system is about 3% - 5% higher than the CCP of the R22 system, while CCP of the R407C system is a little lower than the CCP of R22 system. And the CCP of CO2 trans-critical system has advantage in the hot supply mode. The simulation method provided a theoretical reference for developing the production of CCP with substitute refrigerant R407C/R410A/CO2. 展开更多
关键词 air-cooled Heat Pump Unit Compound Condensation Process (CCP) Exergy Analysis Method Sanitary Hot Water MATLAB/SIMULINK Software Fluorine SUBSTITUTE REFRIGERANT R407C/R410A Natural REFRIGERANT CO2
下载PDF
Effect of Crushed Air-cooled Blast Furnace Slag on Mechanical Properties of Concrete
9
作者 王爱国 邓敏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第4期758-762,共5页
Morphology characteristics of mix aggregates with crushed air-cooled blast furnace slag(SCR) and crushed limestone(LCR) with 5-20 mm and 20-40 mm gradation were represented by numerical parameters including angula... Morphology characteristics of mix aggregates with crushed air-cooled blast furnace slag(SCR) and crushed limestone(LCR) with 5-20 mm and 20-40 mm gradation were represented by numerical parameters including angularity number(AN) and index of aggregate particle shape and texture(IAPST).The effect of mix aggregates containing SCR on compressive strength and splitting tensile strength of concrete was investigated.Fracture characteristics of concrete,interfacial structure between aggregates and matrix were analyzed.The experimental results show that porous and rough SCR increases contact area with matrix in concrete,concave holes and micro-pores on the surface of SCR are filled by mortar and hydrated cement paste,which may increase interlocking and mechanical bond between aggregate and matrix in concrete.SCR can be used to produce a high-strength concrete with better mechanical properties than corresponding concrete made with LCR.The increase of AN and IAPST of aggregate may enhance mechanical properties of concrete. 展开更多
关键词 crushed air-cooled blast furnace slag crushed limestone mechanical property morphology characteristic interfacial structure
下载PDF
Quantitative analysis of Ni effect on CCT diagrams of novel air-cooled bainite steels using artificial neural network models
10
作者 Weihong Xu Wei You +2 位作者 Yaxiu Liu Bingzhe Bai Hongsheng Fang 《Journal of University of Science and Technology Beijing》 CSCD 2005年第5期410-415,共6页
The quantitative effect of Ni content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels was analyzed using artificial neural network models. The results showed that Ni may retard... The quantitative effect of Ni content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels was analyzed using artificial neural network models. The results showed that Ni may retard the high- and medium-temperature transformation and martensite transformation. The results conform to the materials science theories. 展开更多
关键词 novel air-cooled bainite steels NICKEL CCT diagrams artificial neural network
下载PDF
The Experimental Investigation of Recirculation of Air-Cooled System for a Large Power Plant
11
作者 Wanli Zhao Qiyue Wang Peiqing Liu 《Energy and Power Engineering》 2010年第4期291-297,共7页
The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV... The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV experiments are carried out and recirculation ratio of each condition is calculated. Results show that the thermal flow field of the cooling tower has great influence on the recirculation under the cooling tower. Ameliorating the thermal flow field of the cooling tower can reduce the recirculation under the cooling tower and improve the efficiency of air-cooled condenser also. 展开更多
关键词 DIRECT air-cooled CONDENSER Thermal Flow Field Recirculation PIV EXPERIMENT Power PLANT
下载PDF
Influence of thermal flow field of cooling tower on recirculation ratio of a direct air-cooled system for a power plant
12
作者 Zhao Wanli Liu Peiqing 《Engineering Sciences》 EI 2008年第4期64-70,共7页
In order to get thermal flow field of direct air-cooled system,the hot water was supplied to the model of direct air-cooled condenser(ACC). The particle image velocimetery (PIV) experiments were carried out to get the... In order to get thermal flow field of direct air-cooled system,the hot water was supplied to the model of direct air-cooled condenser(ACC). The particle image velocimetery (PIV) experiments were carried out to get thermal flow field of a ACC under different conditions in low velocity wind tunnel,at the same time,the recirculation ratio at cooling tower was measured,so the relationship between flow field characteristics and recirculation ratio of cooling tower can be discussed. From the results we can see that the flow field configuration around cooling tower has great effects on average recirculation ratio under cooling tower. The eddy formed around cooling tower is a key reason that recirculation produces. The eddy intensity relates to velocity magnitude and direction angle,and the configuration of eddy lies on the geometry size of cooling tower. So changing the flow field configuration around cooling tower reasonably can decrease recirculation ratio under cooling tower,and heat dispel effect of ACC can also be improved. 展开更多
关键词 direct air-cooled condenser thermal flow field characteristics recirculation ratio PIV experiment
下载PDF
Water, Air Emissions, and Cost Impacts of Air-Cooled Microturbines for Combined Cooling, Heating, and Power Systems: A Case Study in the Atlanta Region
13
作者 Jean-Ann James Valerie M. Thomas +2 位作者 Arka Pandit Duo Li John C. Crittenden 《Engineering》 SCIE EI 2016年第4期470-480,共11页
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po... The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings. 展开更多
关键词 Combined cooling heating and power (CCHP) air-cooled microturbines Distributed energy generation Water for energy production Net metering
下载PDF
Thermal Management of Air-Cooling Lithium-Ion Battery Pack 被引量:5
14
作者 Jianglong Du Haolan Tao +3 位作者 Yuxin Chen Xiaodong Yuan Cheng Lian Honglai Liu 《Chinese Physics Letters》 SCIE CAS CSCD 2021年第11期77-82,共6页
Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a m... Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a multiscale method combining a pseudo-two-dimensional model of individual battery and three-dimensional computational fluid dynamics is employed to describe heat generation and transfer in a battery pack. The effect of battery arrangement on the thermal performance of battery packs is investigated. We discuss the air-cooling effect of the pack with four battery arrangements which include one square arrangement, one stagger arrangement and two trapezoid arrangements. In addition, the air-cooling strategy is studied by observing temperature distribution of the battery pack. It is found that the square arrangement is the structure with the best air-cooling effect, and the cooling effect is best when the cold air inlet is at the top of the battery pack. We hope that this work can provide theoretical guidance for thermal management of lithium-ion battery packs. 展开更多
关键词 Thermal Management of air-cooling Lithium-Ion Battery Pack
下载PDF
Experimental Testing and Validation of the Mathematical Model for a Self-Humidifying PEM Fuel Cell 被引量:1
15
作者 Ibrahim M. Saleh Rashid Ali Hongwei Zhang 《Journal of Materials Science and Chemical Engineering》 2018年第4期202-218,共17页
This paper presents an experimental testing and validation results for a zero-dimensional self-humidifying PEM (Proton Exchange Membrane) fuel cell stack. The model incorporates major electric and thermodynamic variab... This paper presents an experimental testing and validation results for a zero-dimensional self-humidifying PEM (Proton Exchange Membrane) fuel cell stack. The model incorporates major electric and thermodynamic variables and parameters involved in the operation of the PEM fuel cell under different operational conditions. The mathematical equations are modelled by using Matlab-Simulink tools in order to simulate the operation of the developed model with a commercially available 1 kW Horizon (H-1000) PEM fuel cell stack, which is used for the purposes of model validation and tuning of the developed model. The model is mathematically modelled and presented in the recent published work of authors. The observations from model simulations provide sufficient evidence and support to the results and observations obtained from testing 1 kW Horizon (H-1000) PEM fuel cell stack used in this research. The developed model can be used as a generic model and simulation platform for a self-humidifying PEM fuel cell with an output power varying from 50 W to 1 kW, with extrapolation to higher powers is also possible. 展开更多
关键词 PEM FUEL CELL self-humidifying MODELLING SIMULATION
下载PDF
Research and Demonstration of Direct Air-Cooling System for 600-MW Fossil-Fired Power Plants
16
作者 Zhang Xiaolu 1 , Wang Jianping 2 , Hu Zhenling 3 1. China Power Investment Corporation 2. China Power Engineering Consulting Group Corporation 3. Harbin Air Conditioning Co., Ltd., 《Electricity》 2011年第4期46-51,共6页
Given the distribution feature of resources such as coal and water, the requirements for the development of Chinese power industry, and the fact of monopoly by foreign companies, it is very necessary and significant t... Given the distribution feature of resources such as coal and water, the requirements for the development of Chinese power industry, and the fact of monopoly by foreign companies, it is very necessary and significant to independently research and develop air-cooling technologies. Through experimental research, simulative calculation, process and equipment development, field tests and a demonstration project, the design and operation technologies for air-cooling system are grasped and relevant key equipment is developed. The results of the demonstration project show that the technical indicators for the air-cooling system have met or exceeded the design requirements. Part of the research results have been incorporated into the relevant national design standards. The technologies developed have been applied to more than 23 sets of thermal power units of or above 600 MW in China. 展开更多
关键词 thermal power generating unit air-cooling direct air-cooling project demonstration
下载PDF
Analysis of Air-Cooling Battery Thermal Management System for Formula Student Car
17
作者 Leone Martellucci Kodekondla Kalyan Krishna 《Journal of Transportation Technologies》 2021年第3期436-454,共19页
Designing a good energy storage system represents the most important chall</span><span style="font-family:Verdana;">enge for spreading over a large scale of electric mobility. Proper thermal</... Designing a good energy storage system represents the most important chall</span><span style="font-family:Verdana;">enge for spreading over a large scale of electric mobility. Proper thermal</span> <span style="font-family:Verdana;">management is critical and guarantees optimum working temperature in a</span><span style="font-family:Verdana;"> battery pack. In the various battery thermal management technologies, air cooling is one of the most used solutions. The following work analyzes the cooling performance of the air-cooling thermal management system by choosing appropriate system parameters and analyzes using CFD simulations for accurate thermal modeling. These parameters include the influence of airflow rate </span><span style="font-family:Verdana;">and cell spacing on the configuration. The outcome of the simulations is</span><span style="font-family:Verdana;"> compared using parameters like maximum temperature, and temperature distribution in the battery module to obtain optimum results for further applications. Finally, the simulations of the optimal solution will be compared to experimental results for validation. 展开更多
关键词 BATTERY Thermal Management System air-cooling Formula Student
下载PDF
Experimental Investigation of the Cooling Capacity of Gaseous Carbon Dioxide in Free Jet Expansion for Use in Portable Air-Cooling Systems
18
作者 Chady Al Sayed Ludwig Vinches Stéphane Hallé 《Open Journal of Applied Sciences》 2018年第2期62-72,共11页
This paper investigates the possibility of using the free expansion of gaseous CO2 in portable air-cooling systems. The cooling capacity of the gaseous CO2 free jet expansion was calculated using three different appro... This paper investigates the possibility of using the free expansion of gaseous CO2 in portable air-cooling systems. The cooling capacity of the gaseous CO2 free jet expansion was calculated using three different approaches and the results showed that the simplified calculations would give approximated cooling values with an 11.6% maximum error. The mass flow rate, upstream pressure and cooling capacity of the gaseous CO2 decreased with time. A maximum 48.5 watts of cooling was recorded at minute 4 and a minimum value of 10.4 watts at the end of the test. The drop in cooling capacity is due to the evaporation of the liquid CO2 inside the small cylinder which cools the two-phase CO2 mixture and causes a pressure drop (from 6 MPa to 2.97 MPa), which also affects the mass flow rate of gaseous CO2 exiting the orifice (from 0.56 g/s to 0.24 g/s). If this cooling technique is to be considered in portable compact-cooling systems, the mass, pressure and cooling capacity drop with time must be solved. One of the solutions could be to cover the cylinder with a heating coat to compensate for the heat absorbed by the evaporation of the liquid CO2. 展开更多
关键词 Gaseous CO2 Free JET EXPANSION COOLING Capacity Compact air-cooling Technique
下载PDF
Measures against the adverse impact of natural wind on air-cooled condensers in power plant 被引量:22
19
作者 YANG LiJun,DU XiaoZe & YANG YongPing Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education of China,North China Electric Power University,Beijing 102206,China 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第5期1320-1327,共8页
The natural wind plays disadvantageous roles in the operation of air-cooled steam condensers in power plant.It is of use to take various measures against the adverse effect of wind for the performance improvement of a... The natural wind plays disadvantageous roles in the operation of air-cooled steam condensers in power plant.It is of use to take various measures against the adverse effect of wind for the performance improvement of air-cooled condensers.Based on representative 2×600 MW direct air-cooled power plant,three ways that can arrange and optimize the flow field of cooling air thus enhance the heat transfer of air-cooled condensers were proposed.The physical and mathematical models of air-cooled condensers with various flow leading measures were presented and the flow and temperature fields of cooling air were obtained by CFD simulation.The back pressures of turbine were calculated for different measures on the basis of the heat transfer model of air-cooled condensers.The results show that the performance of air-cooled condensers is improved thus the back pressure of turbine is lowered to some extent by taking measures against the adverse impact of natural wind. 展开更多
关键词 air-cooled CONDENSER WIND SPEED and direction flow and HEAT TRANSFER BACK pressure power plant
原文传递
Distribution optimization of circulating water in air-cooled heat exchangers for a typical indirect dry cooling system on the basis of entransy dissipation 被引量:4
20
作者 SUN Jian YUAN Kai +3 位作者 YANG Li Jun CHEN Lin DU Xiao Ze YANG Yong Ping 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第4期617-629,共13页
The flow and heat transfer of air-cooled heat exchangers play important roles in the performance of indirect dry cooling systems in power plants,so it is of benefit to the design and operation of a typical indirect dr... The flow and heat transfer of air-cooled heat exchangers play important roles in the performance of indirect dry cooling systems in power plants,so it is of benefit to the design and operation of a typical indirect dry cooling system to optimize the thermo-flow characteristics of air-cooled heat exchangers.The entransy dissipation method is applied to the performance optimization of air-cooled heat exchangers in this paper.Two irreversible heat transfer processes in air-cooled heat exchangers,the heat transfer between circulating water and cooling air and the mixing of circulating water,are taken into account and analyzed by means of the entransy dissipation method.The total entransy dissipation rate,which connects the geometrical parameters of air-cooled heat exchanger sectors and the heat capacity rates of the fluids to the heat flow rate in every sector,is obtained.Based on the mathematical relation and the conditional extremum method,an optimization equation group is derived,by which the air-cooled heat exchanger with known air-side parameters is optimized,showing that the entransy dissipation based optimization approach can contribute to the distribution optimization of circulating water in air-cooled heat exchangers of a typical indirect dry cooling system. 展开更多
关键词 indirect dry cooling system air-cooled heat exchanger entransy dissipation OPTIMIZATION
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部