Thermal management of nanoscale quantum dots(QDs)in light-emitting devices is a long-lasting challenge.The existing heat transfer reinforcement solutions for QDs-polymer composite mainly rely on thermal-conductive fil...Thermal management of nanoscale quantum dots(QDs)in light-emitting devices is a long-lasting challenge.The existing heat transfer reinforcement solutions for QDs-polymer composite mainly rely on thermal-conductive fillers.However,this strategy failed to deliver the QDs’heat generation across a long distance,and the accumulated heat still causes considerable temperature rise of QDs-polymer composite,which eventually menaces the performance and reliability of lightemitting devices.Inspired by the radially aligned fruit fibers in oranges,we proposed to eliminate this heat dissipation challenge by establishing long-range ordered heat transfer pathways within the QDs-polymer composite.Ultrahigh molecular weight polyethylene fibers(UPEF)were radially aligned throughout the polymer matrix,thus facilitating massive efficient heat dissipation of the QDs.Under a UPEF filling fraction of 24.46 vol%,the in-plane thermal conductivity of QDs-radially aligned UPEF composite(QDs-RAPE)could reach 10.45 W m^(−1) K^(−1),which is the highest value of QDs-polymer composite reported so far.As a proof of concept,the QDs’working temperature can be reduced by 342.5℃ when illuminated by a highly concentrated laser diode(LD)under driving current of 1000 mA,thus improving their optical performance.This work may pave a new way for next generation high-power QDs lighting applications.展开更多
This study investigates the influence of periodic heat flux and viscous dissipation on magnetohydrodynamic(MHD)flow through a vertical channel with heat generation.A theoretical approach is employed.The channel is exp...This study investigates the influence of periodic heat flux and viscous dissipation on magnetohydrodynamic(MHD)flow through a vertical channel with heat generation.A theoretical approach is employed.The channel is exposed to a perpendicular magnetic field,while one side experiences a periodic heat flow,and the other side undergoes a periodic temperature variation.Numerical solutions for the governing partial differential equations are obtained using a finite difference approach,complemented by an eigenfunction expansion method for analytical solutions.Visualizations and discussions illustrate how different variables affect the flow velocity and temperature fields.This offers comprehensive insights into MHD flow behavior and its interactions with the magnetic field,heat flux,viscous dissipation,and heat generation.The findings hold significance for engineering applications concerning fluid dynamics and heat transfer,offering valuable knowledge in this field.The study concludes that the transient velocity and temperature profiles exhibit periodic patterns under periodic heat flow conditions.A temperature reduction is observed with an increase in the wall temperature phase angle.In contrast,an increase in the heat flux phase angle values raises the temperature values.展开更多
With the widespread use of high-power and highly integrated insulated gate bipolar transistor(IGBT),their cooling methods have become challenging.This paper proposes a liquid cooling scheme for heavy-duty automated gu...With the widespread use of high-power and highly integrated insulated gate bipolar transistor(IGBT),their cooling methods have become challenging.This paper proposes a liquid cooling scheme for heavy-duty automated guided vehicle(AGV)motor driver in port environment,and improves heat dissipation by analyzing and optimizing the core component of finned heat sink.Firstly,the temperature distribution of the initial scheme is studied by using Fluent software,and the heat transfer characteristics of the finned heat sink are obtained through numerical analysis.Secondly,an orthogonal test is designed and combined with the response surface methodology to optimize the structural parameters of the finned heat sink,resulting in a 14.57%increase in the heat dissipation effect.Finally,the effectiveness of heat dissipation enhancement is verified.This work provides valuable insights into improving the heat dissipation of IGBT modules and heat sinks,and provides guidance for their future applications.展开更多
The present investigation centers on the impact of viscous dissipation and ohmic heating on the plume generated by a line heat source under the impact of an aligned magnetic field.In this study,the flow model is adapt...The present investigation centers on the impact of viscous dissipation and ohmic heating on the plume generated by a line heat source under the impact of an aligned magnetic field.In this study,the flow model is adapted to incorporate ohmic heating and viscous dissipation by including the respective terms in the energy equation.A mathematical model is formulated as a system of coupled partial differential equations to analyze the flow problem.Subsequently,a numerical solution is derived with stream function formulation for the system of coupled partial differential equations,which transmutes it into ordinary differential equations.To achieve this,the numerical properties of the problem are established through the utilization of the Shooting method in tandem with the MATLAB tool bvp4c.The graphical representations of both missing and specified boundary conditions depict the effects of the magnetic parameter,viscous dissipation variable,magnetic force parameter,Prandtl number,and magnetic Prandtl number.These are accompanied by a discussion of their respective physical implications.The observed results claimed that the velocity,current density,and temperature distribution decrease for enhancing magnetic parameters.Meanwhile,the skin friction and magnetic flux drop while the heat transfer rate increases with an increment in magnetic parameters.These fluid flow and heat transfer characteristics were observed to decrease for increasing viscous dissipation.The current work is novel in incorporating ohmic heating viscous dissipation in energy equations coupled with Max-well and magnetic induction equations.展开更多
This paper analyzes the sources of heat losses in magnetic fluid bearings,proposes various cou-pling relationships of physical fields,divides the coupled heat transfer surfaces while ensuring the continuity of heat fl...This paper analyzes the sources of heat losses in magnetic fluid bearings,proposes various cou-pling relationships of physical fields,divides the coupled heat transfer surfaces while ensuring the continuity of heat flux density,and analyzes the overall heat dissipation pathways of the bearings.By changing parameters such as input current,rotor speed,and inlet oil flow rate,the study applies a multi-physics field coupling method to investigate the influence of different parameters on the temper-ature field and heat dissipation patterns of the bearings,which is then validated through experi-ments.This research provides a theoretical basis for the optimal design of magnetic fluid bearing sys-tems.展开更多
Heating-only fan coil(HFC)is one of the suited end users,which is not only compact but also highly efficient.And the major factors affecting the heat dissipation performance of HFC include leakage through coil bypass,...Heating-only fan coil(HFC)is one of the suited end users,which is not only compact but also highly efficient.And the major factors affecting the heat dissipation performance of HFC include leakage through coil bypass,distance between fan and coil,fan structure and air inlet type.Under natural air convection or forced,experimental studies were made on the effects of these factors upon the heat dissipation performance of HFC.The results show that:1)After reducing the leakage through coil bypass,the heat dissipation of HFC increases 16.9% under natural convection,and increases 8.3% under forced convection.2)After the distance between fan and coil be raised from 23.2cm to 41.7cm,the heat dissipation of HFC decreases 21.3% under natural convection,but increases12.8% under forced convection.3)After changing the fan structure,the heat dissipation of HFC increases 41.8% under natural convection,and the heat dissipation per motor power increases 96.1% under forced convection.4)The heat dissipations of HFC with round pass,slit and strip type of air inlet are different,whose proportion is about 100%,110%,136% under natural convection,and 100%,105%,116% under forced convection.展开更多
The mechanical behaviors and energy dissipation characteristics of heat-treated granite were investigated under repeated impact loading.The granite samples were firstly heat-treated at the temperature of 20℃,200℃,40...The mechanical behaviors and energy dissipation characteristics of heat-treated granite were investigated under repeated impact loading.The granite samples were firstly heat-treated at the temperature of 20℃,200℃,400℃,and 600℃,respectively.The thermal damage characteristics of these samples were then observed and measured before impact tests.Dynamic impact compression tests finally were carried out using a modified split-Hopkinson pressure bar under three impact velocities of 12 m/s,15 m/s,and 18 m/s.These test results show that the mineral composition and the main oxides of the granite do not change with these treatment temperatures.The number of microcracks and microvoids decreases in the sample after 200℃ treatment.The mechanical properties of a sample after 600℃ treatment were rapidly deteriorated under the same impact velocity.The average of peak stress is much smaller than those after 20℃,200℃ and 400℃ treatments.The heat-treated samples have an energy threshold each.When the dissipated energy of a sample under a single impact is less than this threshold,the repeated impacts hardly lead to further damage accumulation even if its total breakage energy dissipation(BED)density is large.Under the same number of repeated impacts,the cumulative BED density of a sample after 600℃ treatment is the largest and its damage evolves most quickly.The total BED density of the sample after 200℃ treatment is the highest,which implies that this sample has better resistance to repeated impact,thus having less crack initiation and growth.展开更多
Based on the lithium-ion battery pure electric vehicle (PEV) application, two capacity types of batteries are applied in thermal characteristic experiments. With the experimental comparison method, battery thermal c...Based on the lithium-ion battery pure electric vehicle (PEV) application, two capacity types of batteries are applied in thermal characteristic experiments. With the experimental comparison method, battery thermal characteristics and heat generation mechanism are studied. Experiments of batteries in cases of different dimensions, batteries with different air cooling velocity and two capacity types of batteries in free convection environment are put forward. Battery heat generation performance, heat dissipation performance and comparison of different capacity types' batteries are researched and summarized. Conclusions of battery heat generation and dissipation in PEV applications, important battery thermal management factors and suggestions are put forward.展开更多
Two-dimensional boundary layer flow of an incompressible third grade nanofluid over a stretching surface is investigated.Influence of thermophoresis and Brownian motion is considered in the presence of Newtonian heati...Two-dimensional boundary layer flow of an incompressible third grade nanofluid over a stretching surface is investigated.Influence of thermophoresis and Brownian motion is considered in the presence of Newtonian heating and viscous dissipation.Governing nonlinear problems of velocity, temperature and nanoparticle concentration are solved via homotopic procedure.Convergence is examined graphically and numerically. Results of temperature and nanoparticle concentration are plotted and discussed for various values of material parameters, Prandtl number, Lewis number, Newtonian heating parameter, Eckert number and thermophoresis and Brownian motion parameters. Numerical computations are performed. The results show that the change in temperature and nanoparticle concentration distribution functions is similar when we use higher values of material parameters β1 andβ2. It is seen that the temperature and thermal boundary layer thickness are increasing functions of Newtonian heating parameter γ.An increase in thermophoresis and Brownian motion parameters tends to an enhancement in the temperature.展开更多
In order to study the role of printed circuit board(PCB)in high-power LED heat dissipation,a simple model of high-power LED lamp was designed.According to this lamp model,some thermal performances such as thermal resi...In order to study the role of printed circuit board(PCB)in high-power LED heat dissipation,a simple model of high-power LED lamp was designed.According to this lamp model,some thermal performances such as thermal resistances of four types of PCB and the changes of LED junction temperature were tested under three different working currents.The obtained results indicate that LED junction temperature can not be lowered significantly with the decreasing thermal resistance of PCB.However,PCB with low thermal resistance can be matched with smaller volume heat sink,so it is hopeful to reduce the size,weight and cost of LED lamp.展开更多
The aim of the present paper is to study flow and heat transfer charac- teristics of a viscous Casson thin film flow over an unsteady stretching sheet subject to variable heat flux in the presence of slip velocity con...The aim of the present paper is to study flow and heat transfer charac- teristics of a viscous Casson thin film flow over an unsteady stretching sheet subject to variable heat flux in the presence of slip velocity condition and viscous dissipation. The governing equations are partial differential equations. They are reduced to a set of highly nonlinear ordinary differential equations by suitable similarity transformations. The re- sulting similarity equations are solved numerically with a shooting method. Comparisons with previous works are macle, and the results are found to be in excellent agreement. In the present work, the effects of the unsteadiness parameter, the Casson parameter, the Eckert number, the slip velocity parameter, and the Prandtl number on flow and heat transfer characteristics are discussed. Also, the local skin-friction coefficient and the local Nusselt number at the stretching sheet are computed and discussed.展开更多
This paper introduces the effect of heat absorption(generation)and suction(injection)on magnetohydrodynamic(MHD)boundary-layer flow of Casson nanofluid(CNF)via a non-linear stretching surface with the viscous dissipat...This paper introduces the effect of heat absorption(generation)and suction(injection)on magnetohydrodynamic(MHD)boundary-layer flow of Casson nanofluid(CNF)via a non-linear stretching surface with the viscous dissipation in two dimensions.By utilizing the similarity transformations,the leading PDEs are transformed into a set of ODEs with adequate boundary conditions and then resolved numerically by(4–5)^(th)-order Runge-Kutta Fehlberg procedure based on the shooting technique.Numerical computations are carried out by Maple 15 software.With the support of graphs,the impact of dimensionless control parameters on the nanoparticle concentration profiles,the temperature,and the flow velocity are studied.Other parameters of interest,such as the skin friction coefficient,heat,and mass transport at the diverse situation and dependency of various parameters are inspected through tables and graphs.Additionally,it is verified that the numerical computations with the reported earlier studies are in an excellent approval.It is found that the heat and mass transmit rates are enhanced with the increasing values of the power-index and the suction(blowing)parameter,whilst are reduced with the boosting Casson and the heat absorption(generation)parameters.Also,the drag force coefficient is an increasing function of the powerindex and a reduction function of Casson parameter.展开更多
Heat dissipation involved safety issues are crucial for industrial applications of the high-energy density battery and fast charging technology.While traditional air or liquid cooling methods suffering from space limi...Heat dissipation involved safety issues are crucial for industrial applications of the high-energy density battery and fast charging technology.While traditional air or liquid cooling methods suffering from space limitation and possible leakage of electricity during charge process,emerging phase change materials as solid cooling media are of growing interest.Among them,paraffin wax(PW)with large latent heat capacity and low cost is desirable for heat dissipation and thermal management which mainly hindered by their relatively low thermal conductivity and susceptibility to leakage.Here,highly ordered and interconnected hexagonal boron nitride(h-BN)networks were established via ice template method and introduced into PW to enhance the thermal conductivity.The composite with 20 wt%loading amount of h-BN can guarantee a highly ordered network and exhibited high thermal conductivity(1.86 W m^(-1) K^(-1))which was 4 times larger compared with that of random dispersed h-BN involved PW and nearly 8 times larger compared with that of bare PW.The optimal thermal conductive composites demonstrated ultrafast heat dissipation as well as leakage resistance for lithium-ion batteries(LIBs),heat generated by LIBs can be effectively transferred under the working state and the surface temperature kept 6.9℃ lower at most under 2–5℃ continuous charge-discharge process compared with that of bare one which illustrated great potential for industrial thermal management.展开更多
Thermal radiative heat transfer through a thin horizontal liquid film of a Newtonian nanofluid subjected to a magnetic field is considered.The physical boundary conditions are a variable surface heat flux and a unifor...Thermal radiative heat transfer through a thin horizontal liquid film of a Newtonian nanofluid subjected to a magnetic field is considered.The physical boundary conditions are a variable surface heat flux and a uniform concentration along the sheet.Moreover,viscous dissipation is present and concentration is assumed to be influenced by both thermophoresis and Brownian motion effects.Using a similarity method to turn the underlying Partial differential equations into a set of ordinary differential equations(ODEs)and a shooting technique to solve these equations,the skin-friction coefficient,the Nusselt number,and the Sherwood number are determined.Among other things,it is shown that large values of the thermal radiation heat transfer rate,thermal conductivity parameter,and the Brownian motion parameter can enhance the cooling of the sheet.展开更多
The aim of the paper is to investigate the effect of heat and mass transfer on the unsteady magnetohydrodynamic free convective flow with Hall current, heat source, and viscous dissipation. The problem is governed by ...The aim of the paper is to investigate the effect of heat and mass transfer on the unsteady magnetohydrodynamic free convective flow with Hall current, heat source, and viscous dissipation. The problem is governed by the system of coupled non-linear partial differential equations whose exact solution is difficult to obtain. Therefore, the problem is solved by using the Galerkin finite element method. The effects of the various parameters like Hall current, Eckert number, heat source parameter, Prandtl number, and Schmidt number on the velocity components, the temperature, and the concentration are also examined through graphs.展开更多
The combined effects of viscous dissipation and Newtonian heating on bound- ary layer flow over a moving flat plate are investigated for two types of water-based New- tonian nanofluids containing metallic or nonmetall...The combined effects of viscous dissipation and Newtonian heating on bound- ary layer flow over a moving flat plate are investigated for two types of water-based New- tonian nanofluids containing metallic or nonmetallic nanoparticles such as copper (Cu) and titania (Ti02). The governing partial differential equations are transformed into ordinary differential equations through a similarity transformation and are solved numer- ically by a Runge-Kutta-Fehlberg method with a shooting technique. The conclusions are that the heat transfer rate at the moving plate surface increases with the increases in the nanoparticle volume fraction and the Newtonian heating, while it decreases with the increase in the Brinkmann number. Moreover, the heat transfer rate at the moving plate surface with Cu-water as the working nanofiuid is higher than that with TiO2-water.展开更多
Experimental investigations have been devoted to the study of scaling law of coarse-grained dissipation rate structure function for velocity and temperature fluctuation of non-isotropic and inhomogeneous turbulent flo...Experimental investigations have been devoted to the study of scaling law of coarse-grained dissipation rate structure function for velocity and temperature fluctuation of non-isotropic and inhomogeneous turbulent flows at moderate Reynolds number. Much attention has been paid to the case of turbulent boundary layer, which is typically the non-istropic and inhomogeneous trubulence because of the dynamically important existence of organized coherent structure burst process in the near wall region . Longitudinal velocity and temperature have been measured at different vertical positions in turbulent boundary layer over a heated and unheated flat plate in a wind tunnel using hot wire anemometer. The influence of non-isotropy and inhomogeneity and heating the wall on the scaling law of the dissipation rate structure function is studied because of the existence of organized coherent structure burst process in the near wall region . The scaling law of coarse-grained dissipation rate structure function is foun展开更多
In this work, a model of two-temperature generalized thermoelasticity without energy dissipation for an elastic half-space with constant elastic parameters is constructed. The Laplace transform and state-space techniq...In this work, a model of two-temperature generalized thermoelasticity without energy dissipation for an elastic half-space with constant elastic parameters is constructed. The Laplace transform and state-space techniques are used to obtain the general solution for any set of boundary conditions. The general solutions are applied to a specific problem of a half-space subjected to a moving heat source with a constant velocity. The inverse Laplace transforms are computed numerically, and the comparisons are shown in figures to estimate the effects of the heat source velocity and the two-temperature parameter.展开更多
A Metal Core Printed Circuit Board with Micro Heat Exchanger(MHE MCPCB)was introduced for thermal management of high power LED.A comparative study was performed between 4 W/(m·K)regular MCPCB and this novel MCPCB...A Metal Core Printed Circuit Board with Micro Heat Exchanger(MHE MCPCB)was introduced for thermal management of high power LED.A comparative study was performed between 4 W/(m·K)regular MCPCB and this novel MCPCB to investigate the heat dissipation performance of this novel MCPCB.It was found that MHE MCPCB can obviously enhance the comprehensive optical properties of LED in comparison with 4 W/(m·K)regular MCPCB.Additionally,thermal contact resistance confining a dominant part of heat within the micro heat exchanger to achieve high efficient heat dissipation was proved.展开更多
In this paper, we studied the effects of thermal radiation, Joule heating and viscous dissipation on forced convection flow in a magnetohydrodynamics (namely MHD) pump in rectangular channel with uniform surface tempe...In this paper, we studied the effects of thermal radiation, Joule heating and viscous dissipation on forced convection flow in a magnetohydrodynamics (namely MHD) pump in rectangular channel with uniform surface temperature. Numerical results were obtained by solving the nonlinear governing momentum and energy equations with steady state fully developed assumptions by finite difference method. The Lorentz force in momentum and Joule heating, and viscous dissipation in energy equation with the Rossel and approximation are assumed to increase the knowledge of the details of the temperature and flow field in order to design a MHD pump. The purpose of this study is the parametric study of a Newtonian fluid in a MHD pump. The values of maximum velocity, fully developed Nusselt number for different values of magnetic density flux, Brinkman number, viscous heating and radiation number are obtained. However, the maximum temperature stays almost constant with magnetic field, as current increases, the velocity and the temperature increase too. Besides, the increase of thermal radiation number causes the increase in effective thermal conductivity and decrease in thermal boundary layer and the Nusselt number at wall.展开更多
基金supported by the National Natural Science Foundation of China(52106089).
文摘Thermal management of nanoscale quantum dots(QDs)in light-emitting devices is a long-lasting challenge.The existing heat transfer reinforcement solutions for QDs-polymer composite mainly rely on thermal-conductive fillers.However,this strategy failed to deliver the QDs’heat generation across a long distance,and the accumulated heat still causes considerable temperature rise of QDs-polymer composite,which eventually menaces the performance and reliability of lightemitting devices.Inspired by the radially aligned fruit fibers in oranges,we proposed to eliminate this heat dissipation challenge by establishing long-range ordered heat transfer pathways within the QDs-polymer composite.Ultrahigh molecular weight polyethylene fibers(UPEF)were radially aligned throughout the polymer matrix,thus facilitating massive efficient heat dissipation of the QDs.Under a UPEF filling fraction of 24.46 vol%,the in-plane thermal conductivity of QDs-radially aligned UPEF composite(QDs-RAPE)could reach 10.45 W m^(−1) K^(−1),which is the highest value of QDs-polymer composite reported so far.As a proof of concept,the QDs’working temperature can be reduced by 342.5℃ when illuminated by a highly concentrated laser diode(LD)under driving current of 1000 mA,thus improving their optical performance.This work may pave a new way for next generation high-power QDs lighting applications.
文摘This study investigates the influence of periodic heat flux and viscous dissipation on magnetohydrodynamic(MHD)flow through a vertical channel with heat generation.A theoretical approach is employed.The channel is exposed to a perpendicular magnetic field,while one side experiences a periodic heat flow,and the other side undergoes a periodic temperature variation.Numerical solutions for the governing partial differential equations are obtained using a finite difference approach,complemented by an eigenfunction expansion method for analytical solutions.Visualizations and discussions illustrate how different variables affect the flow velocity and temperature fields.This offers comprehensive insights into MHD flow behavior and its interactions with the magnetic field,heat flux,viscous dissipation,and heat generation.The findings hold significance for engineering applications concerning fluid dynamics and heat transfer,offering valuable knowledge in this field.The study concludes that the transient velocity and temperature profiles exhibit periodic patterns under periodic heat flow conditions.A temperature reduction is observed with an increase in the wall temperature phase angle.In contrast,an increase in the heat flux phase angle values raises the temperature values.
基金Supported by the National Key Research and Development Plan Program(No.2022YFB4701101)National Natural Science Foundation of Chi-na(No.U1913211)Natural Science Foundation of Hebei Province of China(No.F2021202062)。
文摘With the widespread use of high-power and highly integrated insulated gate bipolar transistor(IGBT),their cooling methods have become challenging.This paper proposes a liquid cooling scheme for heavy-duty automated guided vehicle(AGV)motor driver in port environment,and improves heat dissipation by analyzing and optimizing the core component of finned heat sink.Firstly,the temperature distribution of the initial scheme is studied by using Fluent software,and the heat transfer characteristics of the finned heat sink are obtained through numerical analysis.Secondly,an orthogonal test is designed and combined with the response surface methodology to optimize the structural parameters of the finned heat sink,resulting in a 14.57%increase in the heat dissipation effect.Finally,the effectiveness of heat dissipation enhancement is verified.This work provides valuable insights into improving the heat dissipation of IGBT modules and heat sinks,and provides guidance for their future applications.
基金supported by the National Foreign Expert Project-Foreign Youth Talent Program Fund No.QN2023001001Beijing Natural Science Foundation Project-Foreign Scholar Program Fund No.IS23046/ZW001A00202301+1 种基金National Natural Science Foundation of China(NSFC)Fund No.12202019Beijing PostdoctoralResearch Activities Fund No.Q6001A00202301.
文摘The present investigation centers on the impact of viscous dissipation and ohmic heating on the plume generated by a line heat source under the impact of an aligned magnetic field.In this study,the flow model is adapted to incorporate ohmic heating and viscous dissipation by including the respective terms in the energy equation.A mathematical model is formulated as a system of coupled partial differential equations to analyze the flow problem.Subsequently,a numerical solution is derived with stream function formulation for the system of coupled partial differential equations,which transmutes it into ordinary differential equations.To achieve this,the numerical properties of the problem are established through the utilization of the Shooting method in tandem with the MATLAB tool bvp4c.The graphical representations of both missing and specified boundary conditions depict the effects of the magnetic parameter,viscous dissipation variable,magnetic force parameter,Prandtl number,and magnetic Prandtl number.These are accompanied by a discussion of their respective physical implications.The observed results claimed that the velocity,current density,and temperature distribution decrease for enhancing magnetic parameters.Meanwhile,the skin friction and magnetic flux drop while the heat transfer rate increases with an increment in magnetic parameters.These fluid flow and heat transfer characteristics were observed to decrease for increasing viscous dissipation.The current work is novel in incorporating ohmic heating viscous dissipation in energy equations coupled with Max-well and magnetic induction equations.
基金the National Natural Science Foundation of China(No.52075468)the Natural Science Foundation of Hebei Province(No.E2020203052)+1 种基金the Key Scientific Research Projects of North China University of Technology(No.ZD-YG-202306-23)the Tangshan Science and Technology Project(No.23130201E).
文摘This paper analyzes the sources of heat losses in magnetic fluid bearings,proposes various cou-pling relationships of physical fields,divides the coupled heat transfer surfaces while ensuring the continuity of heat flux density,and analyzes the overall heat dissipation pathways of the bearings.By changing parameters such as input current,rotor speed,and inlet oil flow rate,the study applies a multi-physics field coupling method to investigate the influence of different parameters on the temper-ature field and heat dissipation patterns of the bearings,which is then validated through experi-ments.This research provides a theoretical basis for the optimal design of magnetic fluid bearing sys-tems.
基金Supported by National11th Five-Year Plan Major Scientific and Technological Issues of China(2006BAJ01A04)
文摘Heating-only fan coil(HFC)is one of the suited end users,which is not only compact but also highly efficient.And the major factors affecting the heat dissipation performance of HFC include leakage through coil bypass,distance between fan and coil,fan structure and air inlet type.Under natural air convection or forced,experimental studies were made on the effects of these factors upon the heat dissipation performance of HFC.The results show that:1)After reducing the leakage through coil bypass,the heat dissipation of HFC increases 16.9% under natural convection,and increases 8.3% under forced convection.2)After the distance between fan and coil be raised from 23.2cm to 41.7cm,the heat dissipation of HFC decreases 21.3% under natural convection,but increases12.8% under forced convection.3)After changing the fan structure,the heat dissipation of HFC increases 41.8% under natural convection,and the heat dissipation per motor power increases 96.1% under forced convection.4)The heat dissipations of HFC with round pass,slit and strip type of air inlet are different,whose proportion is about 100%,110%,136% under natural convection,and 100%,105%,116% under forced convection.
基金This study was financially supported by the National Natural Science Foundation of China(51579062,51379147),which is gratefully appreciated.
文摘The mechanical behaviors and energy dissipation characteristics of heat-treated granite were investigated under repeated impact loading.The granite samples were firstly heat-treated at the temperature of 20℃,200℃,400℃,and 600℃,respectively.The thermal damage characteristics of these samples were then observed and measured before impact tests.Dynamic impact compression tests finally were carried out using a modified split-Hopkinson pressure bar under three impact velocities of 12 m/s,15 m/s,and 18 m/s.These test results show that the mineral composition and the main oxides of the granite do not change with these treatment temperatures.The number of microcracks and microvoids decreases in the sample after 200℃ treatment.The mechanical properties of a sample after 600℃ treatment were rapidly deteriorated under the same impact velocity.The average of peak stress is much smaller than those after 20℃,200℃ and 400℃ treatments.The heat-treated samples have an energy threshold each.When the dissipated energy of a sample under a single impact is less than this threshold,the repeated impacts hardly lead to further damage accumulation even if its total breakage energy dissipation(BED)density is large.Under the same number of repeated impacts,the cumulative BED density of a sample after 600℃ treatment is the largest and its damage evolves most quickly.The total BED density of the sample after 200℃ treatment is the highest,which implies that this sample has better resistance to repeated impact,thus having less crack initiation and growth.
文摘Based on the lithium-ion battery pure electric vehicle (PEV) application, two capacity types of batteries are applied in thermal characteristic experiments. With the experimental comparison method, battery thermal characteristics and heat generation mechanism are studied. Experiments of batteries in cases of different dimensions, batteries with different air cooling velocity and two capacity types of batteries in free convection environment are put forward. Battery heat generation performance, heat dissipation performance and comparison of different capacity types' batteries are researched and summarized. Conclusions of battery heat generation and dissipation in PEV applications, important battery thermal management factors and suggestions are put forward.
基金funded by the Deanship of Scientific Research (DSR), King Abdulaziz University (KAU), under Grant No. 37-130-35-HiCi
文摘Two-dimensional boundary layer flow of an incompressible third grade nanofluid over a stretching surface is investigated.Influence of thermophoresis and Brownian motion is considered in the presence of Newtonian heating and viscous dissipation.Governing nonlinear problems of velocity, temperature and nanoparticle concentration are solved via homotopic procedure.Convergence is examined graphically and numerically. Results of temperature and nanoparticle concentration are plotted and discussed for various values of material parameters, Prandtl number, Lewis number, Newtonian heating parameter, Eckert number and thermophoresis and Brownian motion parameters. Numerical computations are performed. The results show that the change in temperature and nanoparticle concentration distribution functions is similar when we use higher values of material parameters β1 andβ2. It is seen that the temperature and thermal boundary layer thickness are increasing functions of Newtonian heating parameter γ.An increase in thermophoresis and Brownian motion parameters tends to an enhancement in the temperature.
基金Special Fund Project of Science and Technology Innovation of Dongli District(21090302)Research Projectof Applied Basic and Front Technologies of Tianjin(10JCZDJC15400)
文摘In order to study the role of printed circuit board(PCB)in high-power LED heat dissipation,a simple model of high-power LED lamp was designed.According to this lamp model,some thermal performances such as thermal resistances of four types of PCB and the changes of LED junction temperature were tested under three different working currents.The obtained results indicate that LED junction temperature can not be lowered significantly with the decreasing thermal resistance of PCB.However,PCB with low thermal resistance can be matched with smaller volume heat sink,so it is hopeful to reduce the size,weight and cost of LED lamp.
文摘The aim of the present paper is to study flow and heat transfer charac- teristics of a viscous Casson thin film flow over an unsteady stretching sheet subject to variable heat flux in the presence of slip velocity condition and viscous dissipation. The governing equations are partial differential equations. They are reduced to a set of highly nonlinear ordinary differential equations by suitable similarity transformations. The re- sulting similarity equations are solved numerically with a shooting method. Comparisons with previous works are macle, and the results are found to be in excellent agreement. In the present work, the effects of the unsteadiness parameter, the Casson parameter, the Eckert number, the slip velocity parameter, and the Prandtl number on flow and heat transfer characteristics are discussed. Also, the local skin-friction coefficient and the local Nusselt number at the stretching sheet are computed and discussed.
基金the Deanship of Scientific Research,Taif University,KSA[Research Project Number 0-440-6166].
文摘This paper introduces the effect of heat absorption(generation)and suction(injection)on magnetohydrodynamic(MHD)boundary-layer flow of Casson nanofluid(CNF)via a non-linear stretching surface with the viscous dissipation in two dimensions.By utilizing the similarity transformations,the leading PDEs are transformed into a set of ODEs with adequate boundary conditions and then resolved numerically by(4–5)^(th)-order Runge-Kutta Fehlberg procedure based on the shooting technique.Numerical computations are carried out by Maple 15 software.With the support of graphs,the impact of dimensionless control parameters on the nanoparticle concentration profiles,the temperature,and the flow velocity are studied.Other parameters of interest,such as the skin friction coefficient,heat,and mass transport at the diverse situation and dependency of various parameters are inspected through tables and graphs.Additionally,it is verified that the numerical computations with the reported earlier studies are in an excellent approval.It is found that the heat and mass transmit rates are enhanced with the increasing values of the power-index and the suction(blowing)parameter,whilst are reduced with the boosting Casson and the heat absorption(generation)parameters.Also,the drag force coefficient is an increasing function of the powerindex and a reduction function of Casson parameter.
基金supported by the National Key R&D Program of China(2018YFA0209600)the National Natural Science Foundation of China(22022813,21878268)the Leading Innovative and Enterpreneur Team Introduction Program of Zhejiang(2019R01006)。
文摘Heat dissipation involved safety issues are crucial for industrial applications of the high-energy density battery and fast charging technology.While traditional air or liquid cooling methods suffering from space limitation and possible leakage of electricity during charge process,emerging phase change materials as solid cooling media are of growing interest.Among them,paraffin wax(PW)with large latent heat capacity and low cost is desirable for heat dissipation and thermal management which mainly hindered by their relatively low thermal conductivity and susceptibility to leakage.Here,highly ordered and interconnected hexagonal boron nitride(h-BN)networks were established via ice template method and introduced into PW to enhance the thermal conductivity.The composite with 20 wt%loading amount of h-BN can guarantee a highly ordered network and exhibited high thermal conductivity(1.86 W m^(-1) K^(-1))which was 4 times larger compared with that of random dispersed h-BN involved PW and nearly 8 times larger compared with that of bare PW.The optimal thermal conductive composites demonstrated ultrafast heat dissipation as well as leakage resistance for lithium-ion batteries(LIBs),heat generated by LIBs can be effectively transferred under the working state and the surface temperature kept 6.9℃ lower at most under 2–5℃ continuous charge-discharge process compared with that of bare one which illustrated great potential for industrial thermal management.
文摘Thermal radiative heat transfer through a thin horizontal liquid film of a Newtonian nanofluid subjected to a magnetic field is considered.The physical boundary conditions are a variable surface heat flux and a uniform concentration along the sheet.Moreover,viscous dissipation is present and concentration is assumed to be influenced by both thermophoresis and Brownian motion effects.Using a similarity method to turn the underlying Partial differential equations into a set of ordinary differential equations(ODEs)and a shooting technique to solve these equations,the skin-friction coefficient,the Nusselt number,and the Sherwood number are determined.Among other things,it is shown that large values of the thermal radiation heat transfer rate,thermal conductivity parameter,and the Brownian motion parameter can enhance the cooling of the sheet.
基金supported by the University Grants Commission,New Delhi,India
文摘The aim of the paper is to investigate the effect of heat and mass transfer on the unsteady magnetohydrodynamic free convective flow with Hall current, heat source, and viscous dissipation. The problem is governed by the system of coupled non-linear partial differential equations whose exact solution is difficult to obtain. Therefore, the problem is solved by using the Galerkin finite element method. The effects of the various parameters like Hall current, Eckert number, heat source parameter, Prandtl number, and Schmidt number on the velocity components, the temperature, and the concentration are also examined through graphs.
文摘The combined effects of viscous dissipation and Newtonian heating on bound- ary layer flow over a moving flat plate are investigated for two types of water-based New- tonian nanofluids containing metallic or nonmetallic nanoparticles such as copper (Cu) and titania (Ti02). The governing partial differential equations are transformed into ordinary differential equations through a similarity transformation and are solved numer- ically by a Runge-Kutta-Fehlberg method with a shooting technique. The conclusions are that the heat transfer rate at the moving plate surface increases with the increases in the nanoparticle volume fraction and the Newtonian heating, while it decreases with the increase in the Brinkmann number. Moreover, the heat transfer rate at the moving plate surface with Cu-water as the working nanofiuid is higher than that with TiO2-water.
基金Foundation items:the National Natural Science Foundation of China(10002011,19732005)the National Climbing Project(970211021)
文摘Experimental investigations have been devoted to the study of scaling law of coarse-grained dissipation rate structure function for velocity and temperature fluctuation of non-isotropic and inhomogeneous turbulent flows at moderate Reynolds number. Much attention has been paid to the case of turbulent boundary layer, which is typically the non-istropic and inhomogeneous trubulence because of the dynamically important existence of organized coherent structure burst process in the near wall region . Longitudinal velocity and temperature have been measured at different vertical positions in turbulent boundary layer over a heated and unheated flat plate in a wind tunnel using hot wire anemometer. The influence of non-isotropy and inhomogeneity and heating the wall on the scaling law of the dissipation rate structure function is studied because of the existence of organized coherent structure burst process in the near wall region . The scaling law of coarse-grained dissipation rate structure function is foun
文摘In this work, a model of two-temperature generalized thermoelasticity without energy dissipation for an elastic half-space with constant elastic parameters is constructed. The Laplace transform and state-space techniques are used to obtain the general solution for any set of boundary conditions. The general solutions are applied to a specific problem of a half-space subjected to a moving heat source with a constant velocity. The inverse Laplace transforms are computed numerically, and the comparisons are shown in figures to estimate the effects of the heat source velocity and the two-temperature parameter.
文摘A Metal Core Printed Circuit Board with Micro Heat Exchanger(MHE MCPCB)was introduced for thermal management of high power LED.A comparative study was performed between 4 W/(m·K)regular MCPCB and this novel MCPCB to investigate the heat dissipation performance of this novel MCPCB.It was found that MHE MCPCB can obviously enhance the comprehensive optical properties of LED in comparison with 4 W/(m·K)regular MCPCB.Additionally,thermal contact resistance confining a dominant part of heat within the micro heat exchanger to achieve high efficient heat dissipation was proved.
文摘In this paper, we studied the effects of thermal radiation, Joule heating and viscous dissipation on forced convection flow in a magnetohydrodynamics (namely MHD) pump in rectangular channel with uniform surface temperature. Numerical results were obtained by solving the nonlinear governing momentum and energy equations with steady state fully developed assumptions by finite difference method. The Lorentz force in momentum and Joule heating, and viscous dissipation in energy equation with the Rossel and approximation are assumed to increase the knowledge of the details of the temperature and flow field in order to design a MHD pump. The purpose of this study is the parametric study of a Newtonian fluid in a MHD pump. The values of maximum velocity, fully developed Nusselt number for different values of magnetic density flux, Brinkman number, viscous heating and radiation number are obtained. However, the maximum temperature stays almost constant with magnetic field, as current increases, the velocity and the temperature increase too. Besides, the increase of thermal radiation number causes the increase in effective thermal conductivity and decrease in thermal boundary layer and the Nusselt number at wall.