期刊文献+
共找到52,463篇文章
< 1 2 250 >
每页显示 20 50 100
Research and development on foam breaking and recycling technology in air-foam drilling 被引量:2
1
作者 CAO Pinlu ZHANG Jincheng WU Xia HUANG Jinyun 《Global Geology》 2009年第4期204-209,214,共7页
In recent years,air-foam combining the advantages of both liquid and air drilling has been utilized as a drilling medium. Air-foam drilling has proved its efficiency in numerous situations where serious problems were ... In recent years,air-foam combining the advantages of both liquid and air drilling has been utilized as a drilling medium. Air-foam drilling has proved its efficiency in numerous situations where serious problems were encountered,such as in fractured formations and depleted or high permeable zones. However,the major disadvantage of air-foam drilling system is that the foam can only be used once,so that an extremely large pit is required to contain the foam to allow sufficient room for cuttings and for the foam to dissipate. Moreover,it needs enormous volume prepared,consuming abundance of water and ingredient additives,which results in the high cost of foam drilling. The recycling foam fluid by using foam breaking technology is the only effective method to solve these problems associated with the known foam drilling. Various types of equipment and technique have been employed to suppress foam formation in biological and process equipment in foam drilling. The study described various methods of foam breaking technology,and the trend of the foam breaking technology for foam drilling is discussed. 展开更多
关键词 泡沫钻井液 回收技术 空气钻井 钻井液体系 空气泡沫 钻井成本 钻井技术 突破性
下载PDF
Drilling-based measuring method for the c-φ parameter of rock and its field application 被引量:2
2
作者 Bei Jiang Fenglin Ma +5 位作者 Qi Wang Hongke Gao Dahu Zhai Yusong Deng Chuanjie Xu Liangdi Yao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期65-76,共12页
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R... The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters. 展开更多
关键词 Digital drilling Rock crushing zone c-u parameter Measurement method Field application
下载PDF
The Conversion of Non-Dispersed Polymers into Low-Potassium Anti-Collapse Drilling Fluids
3
作者 Hao Hu Jian Guan +2 位作者 Shanfa Tang Jialuo Rong Yuanpeng Cheng 《Fluid Dynamics & Materials Processing》 EI 2024年第2期325-335,共11页
Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low ... Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low potas-sium anti-collapsing drillingfluid is investigated.Since the two drillingfluids belong to completely different types,the key to this conversion is represented by new inhibitors,dispersants and water-loss agents by which a non-dispersed drillingfluid can be turned into a dispersed drillingfluid while ensuring wellbore stability and reason-able rheology(carrying sand—inhibiting cuttings dispersion).In particular,the(QYZ-1)inhibitors and(FSJSS-2)dispersants are used.The former can inhibit the hydration expansion capacity of clay,reduce the dynamic shear force and weaken the viscosity;the latter can improve the sealing effect and reduce thefiltrate loss.The results have shown that after adding a reasonable proportion of these substances(QYZ-1:FSJSS-2)to the non-dispersed polymer drillingfluid,while the apparent viscosity,plastic viscosity,structural viscosity andfluidity index under-went almost negligible changes,the dynamic plastic ratio increased,and thefiltration loss decreased significantly,thereby indicating good compatibility.According to the tests(conducted in the Leijia area),the density was 1.293 g/cm3,and after standing for 24 h,the SF(static settlement factor)was 0.51.Moreover,thefiltration loss was reduced to 4.0 mL,the rolling recovery rate reached 96.92%,with excellent plugging and anti-collapse performances. 展开更多
关键词 Non-dispersed polymer drilling fluid low potassium anti-collapsing drilling fluid drilling fluid conversion drilling fluid reuse filter vector
下载PDF
Digital monitoring of rotary-percussive drilling with down-the-hole hammer for profiling weathered granitic ground
4
作者 Wendal Victor Yue Siyuan Wu +2 位作者 Manchao He Yafei Qiao Zhongqi Quentin Yue 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1615-1636,共22页
Rock and geotechnical engineering investigations involve drilling holes in ground with or without retrieving soil and rock samples to construct the subsurface ground profile.On the basis of an actual soil nailing dril... Rock and geotechnical engineering investigations involve drilling holes in ground with or without retrieving soil and rock samples to construct the subsurface ground profile.On the basis of an actual soil nailing drilling for a slope stability project in Hong Kong,this paper further develops the drilling process monitoring(DPM)method for digitally profiling the subsurface geomaterials of weathered granitic rocks using a compressed airflow driven percussive-rotary drilling machine with down-the-hole(DTH)hammer.Seven transducers are installed on the drilling machine and record the chuck displacement,DTH rotational speed,and five pressures from five compressed airflows in real-time series.The mechanism and operations of the drilling machine are elaborated in detail,which is essential for understanding and evaluating the drilling data.A MATLAB program is developed to automatically filter the recorded drilling data in time series and classify them into different drilling processes in sub-time series.These processes include penetration,push-in with or without rod,pull-back with or without rod,rod-tightening and rod-untightening.The drilling data are further reconstructed to plot the curve of drill-bit depth versus the net drilling time along each of the six drillholes.Each curve is found to contain multiple linear segments with a constant penetration rate,which implies a zone of homogenous geomaterial with different weathering grades.The effect from fluctuation of the applied pressures is evaluated quantitatively.Detailed analyses are presented for accurately assess and verify the underground profiling and strength in weathered granitic rock,which provided the basis of using DPM method to confidently assess drilling measurements to interpret the subsurface profile in real time. 展开更多
关键词 drilling process monitoring(DPM) Down-the-hole(DTH)hammer Percussive-rotary drilling Weathering granitic rocks
下载PDF
Research on the Method of Heat Preservation and Heating for the Drilling System of Polar Offshore Drilling Platform
5
作者 Yingkai Dong Chaohe Chen +2 位作者 Guangyan Jia Lidai Wang Jian Bai 《Energy Engineering》 EI 2024年第5期1173-1193,共21页
This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system.Combining the basic theory of heat transfer with the environmental requ... This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system.Combining the basic theory of heat transfer with the environmental requirements of polar drilling operations and the characteristics of polar drilling processes,we analyze the factors that affect the insulation effect of the drilling rig system.These factors include the thermal conductivity of the insulation material,the thickness of the insulation layer,ambient temperature,and wind speed.We optimize the thermal insulation material of the polar drilling rig system using a steady-state method to measure solid thermal conductivity.By analyzing the distribution of temperature in space after heating,we optimize the distribution and air outlet angle of the heater using Fluent hydrodynamics software.The results demonstrate that under polar conditions,polyisocyanurate with stable thermodynamic properties is selected as the thermal insulation material.The selection of thermal insulation material and thickness significantly affects the thermal insulation effect of the system but has little effect on its heating effect.Moreover,when the air outlet angle of the heater is set to 32.5°,the heating efficiency of the system can be effectively improved.According to heat transfer equations and heat balance theory,we determine that the heating power required for the system to reach 5°C is close to numerical simulation. 展开更多
关键词 Polar drilling drilling system fluid dynamics heat preservation and heating numerical simulation
下载PDF
Chemical modification of barite for improving the performance of weighting materials for water-based drilling fluids
6
作者 Li-Li Yang Ze-Yu Liu +3 位作者 Shi-bo Wang Xian-Bo He Guan-Cheng Jiang Jie Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期551-566,共16页
With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to r... With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs. 展开更多
关键词 drilling fluids Weighting materials Filtration control Reservoir protection Stability property
下载PDF
Inverting the rock mass P-wave velocity field ahead of deep buried tunnel face while borehole drilling
7
作者 Liu Liu Shaojun Li +5 位作者 Minzong Zheng Dong Wang Minghao Chen Junbo Zhou Tingzhou Yan Zhenming Shi 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期681-697,共17页
Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detect... Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detection(DPD)system consisting of a multifunctional sensor and a pilot geophone installed at the top of the drilling rod,geophones at the tunnel face,a laser rangefinder,and an onsite computer.A weighted adjoint-state first arrival travel time tomography method is used to invert the P-wave velocity field of rock mass while borehole drilling.A field experiment in the ongoing construction of a deep buried tunnel in southwestern China demonstrated the DPD system and the tomography method.Time-frequency analysis of typical borehole drilling detection data shows that the impact drilling source is a pulse-like seismic exploration wavelet.A velocity field of the rock mass in a triangular area defined by the borehole trajectory and geophone receiving line can be obtained.Both the borehole core and optical image validate the inverted P-wave velocity field.A numerical simulation of a checkerboard benchmark model is used to test the tomography method.The rapid convergence of the misfits and consistent agreement between the inverted and observed travel times validate the P-wave velocity imaging. 展开更多
关键词 Deep buried tunnel Wave velocity field Borehole drilling Tomography Rock mass
下载PDF
A novel responsive stabilizing Janus nanosilica as a nanoplugging agent in water-based drilling fluids for exploiting hostile shale environments
8
作者 Alain Pierre Tchameni Lv-Yan Zhuo +5 位作者 Lesly Dasilva Wandji Djouonkep Robert Dery Nagre Lu-Xin Chen Lin Zhao Chao Ma Bin-Qiang Xie 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1190-1210,共21页
Thermo-responsive nanocomposites have recently emerged as potential nanoplugging agents for shale stabilization in high-temperature water-based drilling fluids(WBDFs). However, their inhibitory properties have not bee... Thermo-responsive nanocomposites have recently emerged as potential nanoplugging agents for shale stabilization in high-temperature water-based drilling fluids(WBDFs). However, their inhibitory properties have not been very effective in high-temperature drilling operations. Thermo-responsive Janus nanocomposites are expected to strongly interact with clay particles from the inward hemisphere of nanomaterials, which drive the establishment of a tighter hydrophobic membrane over the shale surface at the outward hemisphere under geothermal conditions for shale stabilization. This work combines the synergistic benefits of thermo-responsive and zwitterionic nanomaterials to synchronously enhance the chemical inhibitions and plugging performances in shale under harsh conditions. A novel thermoresponsive Janus nanosilica(TRJS) exhibiting zwitterionic character was synthesized, characterized,and assessed as shale stabilizer for WBDFs at high temperatures. Compared to pristine nanosilica(Si NP)and symmetrical thermo-responsive nanosilica(TRS), TRJS exhibited anti-polyelectrolyte behaviour, in which electrolyte ions screened the electrostatic attraction between the charged particles, potentially stabilizing nanomaterial in hostile shaly environments(i.e., up to saturated brine or API brine). Macroscopically, TRJS exhibited higher chemical inhibition than Si NP and TRS in brine, prompting a better capability to control pressure penetration. TRJS adsorbed onto the clay surface via chemisorption and hydrogen bonding, and the interactions became substantial in brine, according to the results of electrophoretic mobility, surface wettability, and X-ray diffraction. Thus, contributing to the firm trapping of TRJS into the nanopore structure of the shale, triggering the formation of a tight hydrophobic membrane over the shale surface from the outward hemisphere. The addition of TRJS into WBDF had no deleterious effect on fluid properties after hot-treatment at 190℃, implying that TRJS could find potential use as a shale stabilizer in WBDFs in hostile environments. 展开更多
关键词 Janus nanosilica Thermo-responsive copolymer Anti-polyelectrolyte effect Shale stabilizer Inhibition Plugging drilling fluid
下载PDF
Synthetic polymers:A review of applications in drilling fluids
9
作者 Shadfar Davoodi Mohammed Al-Shargabi +2 位作者 David A.Wood Valeriy S.Rukavishnikov Konstantin M.Minaev 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期475-518,共44页
With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complicatio... With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided. 展开更多
关键词 Synthetic versus natural polymers Nanopolymers drilling fluid additives LUBRICITY Clay swelling Hole cleaning
下载PDF
A New Heat Transfer Model for Multi-Gradient Drilling with Hollow Sphere Injection
10
作者 Jiangshuai Wang Chuchu Cai +3 位作者 Pan Fu Jun Li Hongwei Yang Song Deng 《Fluid Dynamics & Materials Processing》 EI 2024年第3期537-546,共10页
Multi-gradient drilling is a new offshore drilling method.The accurate calculation of the related wellbore temperature is of great significance for the prediction of the gas hydrate formation area and the precise cont... Multi-gradient drilling is a new offshore drilling method.The accurate calculation of the related wellbore temperature is of great significance for the prediction of the gas hydrate formation area and the precise control of the wellbore pressure.In this study,a new heat transfer model is proposed by which the variable mass flow is properly taken into account.Using this model,the effects of the main factors influencing the wellbore temperature are analyzed.The results indicate that at the position where the separation injection device is installed,the temperature increase of the fluid in the drill pipe is mitigated due to the inflow/outflow of hollow spheres,and the temperature drop of the fluid in the annulus also decreases.In addition,a lower separation efficiency of the device,a shallower installation depth and a smaller circulating displacement tend to increase the temperature near the bottom of the annulus,thereby helping to reduce the hydrate generation area and playing a positive role in the prevention and control of hydrates in deepwater drilling. 展开更多
关键词 Multi-gradient drilling wellbore temperature HYDRATE separate injection device variable mass
下载PDF
Dynamic Analysis of A Deepwater Drilling Riser with A New Hang-off System
11
作者 LI Yan-wei LIU Xiu-quan +3 位作者 WANG Jin-long CHEN Guo-ming CHANG Yuan-jiang SHENG Lei-xiang 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期29-41,共13页
The safety of risers in hang-off states is a vital challenge in offshore oil and gas engineering.A new hang-off system installed on top of risers is proposed for improving the security of risers.This approach leads to... The safety of risers in hang-off states is a vital challenge in offshore oil and gas engineering.A new hang-off system installed on top of risers is proposed for improving the security of risers.This approach leads to a challenging problem:coupling the dynamics of risers with a new hang-off system combined with multiple structures and complex constraints.To accurately analyze the dynamic responses of the coupled system,a coupled dynamic model is established based on the Euler-Bernoulli beam-column theory and penalty function method.A comprehensive analysis method is proposed for coupled dynamic analysis by combining the finite element method and the Newmarkβmethod.An analysis program is also developed in MATLAB for dynamic simulation.The simulation results show that the dynamic performances of the risers at the top part are significantly improved by the new hang-off system,especially the novel design,which includes the centralizer and articulation joint.The bending moment and lateral deformation of the risers at the top part decrease,while the hang-off joint experiences a great bending moment at the bottom of the lateral restraint area which requires particular attention in design and application.The platform navigation speed range under the safety limits of risers expands with the new hang-off system in use. 展开更多
关键词 deepwater drilling riser new hang-off system dynamic analysis finite element method penalty function method
下载PDF
Formation damage mechanism and control strategy of the compound function of drilling fluid and fracturing fluid in shale reservoirs
12
作者 SUN Jinsheng XU Chengyuan +6 位作者 KANG Yili JING Haoran ZHANG Jie YANG Bin YOU Lijun ZHANG Hanshi LONG Yifu 《Petroleum Exploration and Development》 SCIE 2024年第2期430-439,共10页
For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture ... For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection. 展开更多
关键词 shale oil and gas drilling fluid fracturing fluid stress-sensitive solid blocking formation damage reservoir protection
下载PDF
Surgical Treatment of Osteonecrosis of the Femoral Head Using Minimally Invasive Surgical Drilling and Cancellous Grafting at Brazzaville University Hospital
13
作者 Kevin Parfait Bienvenu Bouhelo-Pam Marius Monka +4 位作者 Arnauld Sledje Wilfrid Bilongo Bouyou Regis Perry Massouama Paul Yèlai Ikounga Roger Bertrand Sah Mbou Armand Moyikoua 《Open Journal of Orthopedics》 2024年第2期122-132,共11页
Introduction: Osteonecrosis of the femoral head (ONTF) is a debilitating condition. Several treatments have been proposed with controversial results. The aim of our study was to evaluate treatment by surgical drilling... Introduction: Osteonecrosis of the femoral head (ONTF) is a debilitating condition. Several treatments have been proposed with controversial results. The aim of our study was to evaluate treatment by surgical drilling coupled with in situ cancellous grafting. Materials and methods: Our study was a case-control study conducted at Brazzaville University Hospital from 1st January 2018 to 31 December 2023. It compared two groups of patients with ONTF: non-operated (13 patients, 20 hips) and operated (22 patients, 35 hips). We used the visual digital scale (VDS) for pain assessment, the Merle D’Aubigne-Postel (MDP) scoring system for clinical and functional assessment, and the evolution of necrosis. Results: The group of non-operated patients had a mean age of 35.69 ± 3.4 years, no improvement in pain with an EVN above seven at the last recoil and a mean global MDP score falling from 12.7 before offloading to 10.13 at one year. The group of patients operated on had a mean age of 37.86 ± 7.02 years, a significant reduction in pain (p = 0.00004) and a significantly increased MDP score (p = 0.0034). A comparison of the two groups of patients showed significant stabilization of the necrotic lesions in the operated patients (p = 0.00067), with better satisfaction in the same group. Conclusion: Surgical drilling combined with grafting in the treatment of early-stage ONTF has improved progress in our series. The technique is reproducible and less invasive. It has made it possible to delay unfavorable progression and, consequently, hip replacement surgery. 展开更多
关键词 HIP Osteonecrosis of the Femoral Head Conservative Treatment Surgical drilling Bone Grafting
下载PDF
Effects of Drilling in Mastoid Cavity over Hearing in the Contralateral Ear
14
作者 Saumyata Neeraj 《International Journal of Otolaryngology and Head & Neck Surgery》 2024年第2期85-102,共18页
In advanced otological surgeries, powered instruments form an indispensable part. The risk of deterioration to hearing in the operated ear is a commonly discussed issue, however, there remains a possibility of affecti... In advanced otological surgeries, powered instruments form an indispensable part. The risk of deterioration to hearing in the operated ear is a commonly discussed issue, however, there remains a possibility of affecting the hearing in the contralateral ear due to transcranial vibration. So in this study we aimed to assess the possibility of the non-operated ear being affected by the noise generated during ear surgeries and whether it is temporary or permanent in nature. Methodology: This study included 63 patients diagnosed with unilateral disease who underwent mastoid surgery. Preoperatively all the patients were subjected to Pure tone audiometry (PTA), Transient evoked otoacoustic emission (TEOAE) and Distortion product otoacoustic emission (DPOAE). Patients were operated using both cutting and diamond burrs of ranging from sizes 1 - 6 mm. Total drilling time was recorded. Results: Post-operative hearing evaluation was done at 1 week, 4 weeks and 12 weeks. The sound emitted by various burrs was recorded by Sound Level Meter. Out of the total 58 patients that followed up, 46 showed change in at least one of the hearing parameters. Patients showing changes had a higher drilling time as compared to those with no changes. Of these, the changes associated with the total drilling time and with cutting burr time were found to be significant. The hearing changes seen on PTA, TEOAE and DPOAE were transient in nature with only one patient having a persistent decreased high frequency threshold at the end of 12 weeks. It was also found that cutting burrs produce more sound as compared to diamond burrs and a larger size burr of a type produces more sound than a smaller one of its type. Conclusion: The drilling of mastoid bone during ear surgeries can transiently impair the hearing in the contralateral ear which is of great significance in patients with only one hearing ear. 展开更多
关键词 Mastoid drilling Affected Hearing Contralateral Ear Damage
下载PDF
In situ strength profiles along two adjacent vertical drillholes from digitalization of hydraulic rotary drilling 被引量:3
15
作者 Xuefan Wang Peng Peng +1 位作者 Zhigang Shan Zhongqi Yue 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期146-168,共23页
Drilling speed and associated analyses from factual field data of hydraulic rotary drilling have not been fully utilized.The paper provides the reference and comparison for the utilization of drilling information from... Drilling speed and associated analyses from factual field data of hydraulic rotary drilling have not been fully utilized.The paper provides the reference and comparison for the utilization of drilling information from two adjacent vertical drillholes that were formed with the same hydraulic rotary drilling machine and bit.The analysis of original factual data is presented to obtain the constant drilling speed during net drilling process.According to the factual data along two adjacent drillholes,the digitalization results respectively include 461 linear zones and 210 linear zones with their constant drilling speeds and associated drilling parameters.The digitalization results can accurately present the spatial distributions and interface boundaries of drilled geomaterials and the results are consistent with the paralleled site loggings.The weighted average drilling speeds from 2.335 m/min to 0.044 m/min represent 13 types of drilled geomaterials from soils to hard rocks.The quantitative relation between drilling speed and strength property is provided.The digitalization results can statistically profile the basic strength quality grades of III to VI from soils to hard rocks.The thickness distributions of four strength quality grades are presented for each individual type of geomaterials along two drillholes.In total,50.2%of geomaterials from drillhole A are grade IV and 57.4%of geomaterials from drillhole B are grade III.The digitalization results can offer an accurate and cost-effective tool to quantitatively describe the spatial distribution and in situ strength profile of drilled geomaterials in the current drilling projects. 展开更多
关键词 drilling process monitoring(DPM) Hydraulic rotary coring process Constant drilling speed Coring-resistant strength
下载PDF
Crack-free high-aspect ratio holes in glasses by top–down percussion drilling with infrared femtosecond laser GHz-bursts 被引量:2
16
作者 Pierre Balage John Lopez +2 位作者 Guillaume Bonamis Clemens Hönninger Inka Manek-Hönninger 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期193-200,共8页
We report novel results on top-down percussion drilling in different glasses with femtosecond laser GHz-bursts.Thanks to this particular regime of light–matter interaction,combining non-linear absorption and thermal ... We report novel results on top-down percussion drilling in different glasses with femtosecond laser GHz-bursts.Thanks to this particular regime of light–matter interaction,combining non-linear absorption and thermal cumulative effects,we obtained crack-free holes of aspect ratios exceeding 30 in sodalime and 70 in fused silica.The results are discussed in terms of inner wall morphology,aspect ratio and drilling speed. 展开更多
关键词 femtosecond laser glass GHz-bursts percussion drilling
下载PDF
Improving the anti-collapse performance of water-based drilling fluids of Xinjiang Oilfield using hydrophobically modified silica nanoparticles with cationic surfactants 被引量:1
17
作者 He Li Xian-Bin Huang +3 位作者 Jin-Sheng Sun Kai-He Lv Xu Meng Zhen Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1768-1778,共11页
Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of... Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of using hydrophobically modified silica nanoparticle(HMN)to enhance the comprehensive performance of WBDFs in the Xinjiang Oilfield,especially the anti-collapse performance.The effect of HMN on the overall performance of WBDFs in the Xinjiang Oilfield,including inhibition,plugging,lu-bricity,rheology,and filtration loss,was studied with a series of experiments.The mechanism of HMN action was studied by analyzing the changes of shale surface structure and chemical groups,wettability,and capillary force.The experimental results showed that HMN could improve the performance of WBDFs in the Xinjiang Oilfeld to inhibit the hydration swelling and dispersion of shale.The plugging and lubrication performance of the WBDFs in the Xinjiang Oilfield were also enhanced with HMN based on the experimental results.HMN had less impact on the rheological and filtration performance of the WBDFs in the Xinjiang Oilfield.In addition,HMN significantly prevented the decrease of shale strength.The potential mechanism of HMN was as follows.The chemical composition and structure of the shale surface were altered due to the adsorption of HMN driven by electrostatic attraction.Changes of the shale surface resulted in significant wettability transition.The capillary force of the shale was converted from a driving force of water into the interior to a resistance.In summary,hydrophobic nanoparticles presented afavorable application potential for WBDFs. 展开更多
关键词 Hydrophobic nanoparticle Wetting alteration Wellbore stability Water-based drilling fluids SHALE
下载PDF
A New Simulation Model for Recoil Analysis of Deep-Water Drilling Risers After Emergency Disconnection 被引量:1
18
作者 WU Jun-kang MENG Shuai 《China Ocean Engineering》 SCIE EI CSCD 2023年第4期637-644,共8页
The recoil response of a deep-water drilling riser following an ED(Emergency Disconnection)scenario is a transient and sensitive process.The recoiling displacement of the riser is the resultant of recoil motion and ax... The recoil response of a deep-water drilling riser following an ED(Emergency Disconnection)scenario is a transient and sensitive process.The recoiling displacement of the riser is the resultant of recoil motion and axial stretch.How-ever,it is typically represented by one variable in recoil simulations.As axial deformation is quite small compared with axial motion in the recoil process,it inevitably introduces numerical errors(i.e.,a large number annihilating a small number).Thus,it is hard to perform a quantitative analysis of axial deformation,although a consensus initial deformation is essential for recoil dynamics.Moreover,the triggered axial natural modes have never been examined before.In this study,the recoil response is decomposed into two parts:recoil motion and axial deformation,and a novel model is developed by Galerkin method.It has demonstrated that the initial stretch has a significant effect at the initial stage in recoil.The existing models underestimate the effects of axial deformation.The new model can capture information of triggered natural modes and figure out the modes undergoing dynamic compression.This study can be beneficial to overpull setting,determination of ED time and anti-recoil control optimization. 展开更多
关键词 recoil analysis drilling riser emergency disconnection axial deformation Galerkin method
下载PDF
Cooling and Crack Suppression of Bone Material Drilling Based on Microtextured Bit Modeled on Dung Beetle 被引量:1
19
作者 Yunsong Lian Xiande Chen +4 位作者 Chaoping Xie Yangyang Long Fengtian Lin Wei Zhou Xuyang Chu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期116-128,共13页
In recent years,the number of patients with orthopedic diseases such as cervical spondylosis has increased,resulting in an increase in the demand for orthopedic surgery.However,thermal necrosis and bone cracks caused ... In recent years,the number of patients with orthopedic diseases such as cervical spondylosis has increased,resulting in an increase in the demand for orthopedic surgery.However,thermal necrosis and bone cracks caused by surgery severely restrict the development and progression of orthopedic surgery.For the material of cutting tool processing bone in bone surgery of drilling high temperature lead to cell death,easy to produce the problem such as crack cause secondary damage effects to restore,in this paper,a bionic drill was designed based on the micro-structure of the dung beetle's head and back.The microstructure configuration parameters were optimized by numerical analysis,and making use of the optical fiber laser marking machine preparation of bionic bit;through drilling test,the mathematical model of drilling temperature and crack generation based on micro-structure characteristic parameters was established by infrared thermal imaging technology and acoustic emission signal technology,and the cooling mechanism and crack suppression strategy were studied.The experimental results show that when the speed is 60 m/min,the cooling effects of the bionic bit T1 and T2 are 15.31%and 19.78%,respectively,and both kinds of bits show obvious crack suppression effect.The research in this paper provides a new idea for precision and efficient machining of bone materials,and the research results will help to improve the design and manufacturing technology and theoretical research level in the field of bone drilling tools. 展开更多
关键词 Bionic drill Bone material cutting Laser processing Thermal imaging camera Acoustic emission
下载PDF
Evaluation of the oil and gas preservation conditions, source rocks, and hydrocarbongenerating potential of the Qiangtang Basin: New evidence from the scientific drilling project 被引量:2
20
作者 Li-jun Shen Jian-yong Zhang +4 位作者 Shao-yun Xiong Jian Wang Xiu-gen Fu Bo Zheng Zhong-wei Wang 《China Geology》 CAS CSCD 2023年第2期187-207,共21页
The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of ... The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of well QK-1 and its supporting shallow boreholes for geological surveys(also referred to as the Project)completed in recent years contributes to a series of new discoveries and insights into the oil and gas preservation conditions and source rock evaluation of the Qiangtang Basin.These findings differ from previous views that the Qiangtang Basin has poor oil and gas preservation conditions and lacks high-quality source rocks.As revealed by well QK-1 and its supporting shallow boreholes in the Project,the Qiangtang Basin hosts two sets of high-quality regional seals,namely an anhydrite layer in the Quemo Co Formation and the gypsum-bearing mudstones in the Xiali Formation.Moreover,the Qiangtang Basin has favorable oil and gas preservation conditions,as verified by the comprehensive study of the sealing capacity of seals,basin structure,tectonic uplift,magmatic activity,and groundwater motion.Furthermore,the shallow boreholes have also revealed that the Qiangtang Basin has high-quality hydrocarbon source rocks in the Upper Triassic Bagong Formation,which are thick and widely distributed according to the geological and geophysical data.In addition,the petroleum geological conditions,such as the type,abundance,and thermal evolution of organic matter,indicate that the Qiangtang Basin has great hydrocarbon-generating potential. 展开更多
关键词 Scientific drilling project Oil and gas preservation Source rock Quemo Co Formation Oil and gas exploration engineering Qiangtang Basin Tibet
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部