Recent progress in the treatment of Alzheimer’s disease(AD)using antibodies against amyloid sustains amyloid generation as a key process in AD.Amyloid formation starts with two amyloidbeta(Aβ)molecules interacting(d...Recent progress in the treatment of Alzheimer’s disease(AD)using antibodies against amyloid sustains amyloid generation as a key process in AD.Amyloid formation starts with two amyloidbeta(Aβ)molecules interacting(dimer formation)followed by an accelerating build-up of socalled protofibrils,which turn into fibrils,which accumulate in the characteristic plaques.展开更多
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t...Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.展开更多
In the present study,we investigated the synergistic effects of targeted methotrexate-selenium nanostructure containing Myc decoy oligodeoxynucleotides along with X-irradiation exposure as a combination therapy on LNC...In the present study,we investigated the synergistic effects of targeted methotrexate-selenium nanostructure containing Myc decoy oligodeoxynucleotides along with X-irradiation exposure as a combination therapy on LNCaP prostate cancer cells.Myc decoy ODNs were designed based on the promoter of Bcl-2 gene and analyzed by molecular docking and molecular dynamics assays.ODNs were loaded on the synthesized Se@BSA@Chi-MTX nanostructure.The physicochemical characteristics of nanostructures were determined by FTIR,DLS,UV-vis,TEM,EDX,in vitro release,and hemolysis tests.Subsequently,the cytotoxicity properties of them with and without X-irradiation were investigated by uptake,MTT,cell cycle,apoptosis,and scratch assays on the LNCaP cell line.The results of DLS and TEM showed negative charge(−9 mV)and nanometer size(40 nm)for Se@BSA@Chi-DEC-MTX NPs,respectively.The results of FTIR,UV-vis,and EDX showed the proper interaction of different parts and the correct synthesis of nanoparticles.The results of hemolysis showed the hemocompatibility of this nanoparticle in concentrations less than 6 mg/mL.The ODNs release from the nanostructures showed a pH-dependent manner,and the release rate was 15%higher in acidic pH.The targeted Se@BSA@Chi-labeled ODN-MTX NPs were efficiently taken up by LNCaP cells by targeting the prostate-specific membrane antigen(PSMA).The significant synergistic effects of nanostructure(containing MTX drug)treatment along with X-irradiation showed cell growth inhibition,apoptosis induction(~57%),cell cycle arrest(G2/M phase),and migration inhibition(up to 90%)compared to the control.The results suggested that the Se@BSA@Chi-DEC-MTX NPs can potentially suppress the cell growth of LNCaP cells.This nanostructure system can be a promising approach for targeted drug delivery and chemoradiotherapy in prostate cancer treatment.展开更多
For rigid-flexible coupling multi-body with variable topology,such as the system of internally carried air-launched or heavy cargo airdrop,in order to construct a dynamic model with unified form,avoid redundancy in th...For rigid-flexible coupling multi-body with variable topology,such as the system of internally carried air-launched or heavy cargo airdrop,in order to construct a dynamic model with unified form,avoid redundancy in the modeling process and make the solution independent,a method based on the equivalent rigidization model was proposed.It divides a system into independent subsystems by cutting off the joints,of which types are changed with the operation process of the system.And models of different subsystems can be constructed via selecting suitable modeling methods.Subsystem models with flexible bodies are on the basis of the equivalent rigidization model which replaces the flexible bodies with the virtual rigid bodies.And the solution for sanction,which is based on the constraints force algorithm(CFA)and vector mechanics,can be independent on the state equations.The internally carried air-launched system was taken as an example for verifying validity and feasibility of the method and theory.The dynamic model of aircraft-rocket-parachute system in the entire phase was constructed.Comparing the modeling method with the others,the modeling process was programmed;and form of the model is unified and simple.The model,method and theory can be used to analyze other similar systems such as heavy cargo airdrop system and capsule parachute recovery system.展开更多
Quantum key distribution provides an unconditional secure key sharing method in theory,but the imperfect factors of practical devices will bring security vulnerabilities.In this paper,we characterize the imperfections...Quantum key distribution provides an unconditional secure key sharing method in theory,but the imperfect factors of practical devices will bring security vulnerabilities.In this paper,we characterize the imperfections of the sender and analyze the possible attack strategies of Eve.Firstly,we present a quantized model for distinguishability of decoy states caused by intensity modulation.Besides,considering that Eve may control the preparation of states through hidden variables,we evaluate the security of preparation in practical quantum key distribution(QKD)scheme based on the weak-randomness model.Finally,we analyze the influence of the distinguishability of decoy state to secure key rate,for Eve may conduct the beam splitting attack and control the channel attenuation of different parts.Through the simulation,it can be seen that the secure key rate is sensitive to the distinguishability of decoy state and weak randomness,especially when Eve can control the channel attenuation.展开更多
Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant...Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant system performance to deteriorate when data size is below 1010.In this work,an improved statistical fluctuation analysis method is applied for the first time to two decoy-states phase-matching quantum key distribution,offering a new insight and potential solutions for improving the key generation rate and the maximum transmission distance while maintaining security.Moreover,we also compare the influence of the proposed improved statistical fluctuation analysis method on system performance with those of the Gaussian approximation and Chernoff-Hoeffding boundary methods on system performance.The simulation results show that the proposed scheme significantly improves the key generation rate and maximum transmission distance in comparison with the Chernoff-Hoeffding approach,and approach the results obtained when the Gaussian approximation is employed.At the same time,the proposed scheme retains the same security level as the Chernoff-Hoeffding method,and is even more secure than the Gaussian approximation.展开更多
In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protoc...In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol,the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie's successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover,the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence(AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source.展开更多
基金supported by several grant agencies as stated in the full paper(to LT)。
文摘Recent progress in the treatment of Alzheimer’s disease(AD)using antibodies against amyloid sustains amyloid generation as a key process in AD.Amyloid formation starts with two amyloidbeta(Aβ)molecules interacting(dimer formation)followed by an accelerating build-up of socalled protofibrils,which turn into fibrils,which accumulate in the characteristic plaques.
基金the National Natural Science Foundation of China(Grant No.62101579).
文摘Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.
基金Zanjan University of Medical Sciences supported the present study(Grant Number:A-12-1244-18).
文摘In the present study,we investigated the synergistic effects of targeted methotrexate-selenium nanostructure containing Myc decoy oligodeoxynucleotides along with X-irradiation exposure as a combination therapy on LNCaP prostate cancer cells.Myc decoy ODNs were designed based on the promoter of Bcl-2 gene and analyzed by molecular docking and molecular dynamics assays.ODNs were loaded on the synthesized Se@BSA@Chi-MTX nanostructure.The physicochemical characteristics of nanostructures were determined by FTIR,DLS,UV-vis,TEM,EDX,in vitro release,and hemolysis tests.Subsequently,the cytotoxicity properties of them with and without X-irradiation were investigated by uptake,MTT,cell cycle,apoptosis,and scratch assays on the LNCaP cell line.The results of DLS and TEM showed negative charge(−9 mV)and nanometer size(40 nm)for Se@BSA@Chi-DEC-MTX NPs,respectively.The results of FTIR,UV-vis,and EDX showed the proper interaction of different parts and the correct synthesis of nanoparticles.The results of hemolysis showed the hemocompatibility of this nanoparticle in concentrations less than 6 mg/mL.The ODNs release from the nanostructures showed a pH-dependent manner,and the release rate was 15%higher in acidic pH.The targeted Se@BSA@Chi-labeled ODN-MTX NPs were efficiently taken up by LNCaP cells by targeting the prostate-specific membrane antigen(PSMA).The significant synergistic effects of nanostructure(containing MTX drug)treatment along with X-irradiation showed cell growth inhibition,apoptosis induction(~57%),cell cycle arrest(G2/M phase),and migration inhibition(up to 90%)compared to the control.The results suggested that the Se@BSA@Chi-DEC-MTX NPs can potentially suppress the cell growth of LNCaP cells.This nanostructure system can be a promising approach for targeted drug delivery and chemoradiotherapy in prostate cancer treatment.
文摘For rigid-flexible coupling multi-body with variable topology,such as the system of internally carried air-launched or heavy cargo airdrop,in order to construct a dynamic model with unified form,avoid redundancy in the modeling process and make the solution independent,a method based on the equivalent rigidization model was proposed.It divides a system into independent subsystems by cutting off the joints,of which types are changed with the operation process of the system.And models of different subsystems can be constructed via selecting suitable modeling methods.Subsystem models with flexible bodies are on the basis of the equivalent rigidization model which replaces the flexible bodies with the virtual rigid bodies.And the solution for sanction,which is based on the constraints force algorithm(CFA)and vector mechanics,can be independent on the state equations.The internally carried air-launched system was taken as an example for verifying validity and feasibility of the method and theory.The dynamic model of aircraft-rocket-parachute system in the entire phase was constructed.Comparing the modeling method with the others,the modeling process was programmed;and form of the model is unified and simple.The model,method and theory can be used to analyze other similar systems such as heavy cargo airdrop system and capsule parachute recovery system.
基金the National Key Research and Development Program of China(Grant No.2020YFA0309702)NSAF(Grant No.U2130205)+3 种基金the National Natural Science Foundation of China(Grant Nos.62101597,61605248,and 61505261)the China Postdoctoral Science Foundation(Grant No.2021M691536)the Natural Science Foundation of Henan(Grant Nos.202300410534 and 202300410532)the Anhui Initiative in Quantum Information Technologies。
文摘Quantum key distribution provides an unconditional secure key sharing method in theory,but the imperfect factors of practical devices will bring security vulnerabilities.In this paper,we characterize the imperfections of the sender and analyze the possible attack strategies of Eve.Firstly,we present a quantized model for distinguishability of decoy states caused by intensity modulation.Besides,considering that Eve may control the preparation of states through hidden variables,we evaluate the security of preparation in practical quantum key distribution(QKD)scheme based on the weak-randomness model.Finally,we analyze the influence of the distinguishability of decoy state to secure key rate,for Eve may conduct the beam splitting attack and control the channel attenuation of different parts.Through the simulation,it can be seen that the secure key rate is sensitive to the distinguishability of decoy state and weak randomness,especially when Eve can control the channel attenuation.
文摘Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant system performance to deteriorate when data size is below 1010.In this work,an improved statistical fluctuation analysis method is applied for the first time to two decoy-states phase-matching quantum key distribution,offering a new insight and potential solutions for improving the key generation rate and the maximum transmission distance while maintaining security.Moreover,we also compare the influence of the proposed improved statistical fluctuation analysis method on system performance with those of the Gaussian approximation and Chernoff-Hoeffding boundary methods on system performance.The simulation results show that the proposed scheme significantly improves the key generation rate and maximum transmission distance in comparison with the Chernoff-Hoeffding approach,and approach the results obtained when the Gaussian approximation is employed.At the same time,the proposed scheme retains the same security level as the Chernoff-Hoeffding method,and is even more secure than the Gaussian approximation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61271238 and 61475075)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20123223110003)+7 种基金the Natural Science Research Foundation for Universities of Jiangsu Province of China(Grant No.11KJA510002)the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network TechnologyMinistry of EducationChina(Grant No.NYKL2015011)the Innovation Program of Graduate Education of Jiangsu ProvinceChina(Grant No.KYLX0810)partially supported by Qinglan Project of Jiangsu ProvinceChina
文摘In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol,the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie's successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover,the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence(AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source.