期刊文献+
共找到11,823篇文章
< 1 2 250 >
每页显示 20 50 100
A transient production prediction method for tight condensate gas wells with multiphase flow
1
作者 BAI Wenpeng CHENG Shiqing +3 位作者 WANG Yang CAI Dingning GUO Xinyang GUO Qiao 《Petroleum Exploration and Development》 SCIE 2024年第1期172-179,共8页
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press... Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves. 展开更多
关键词 tight reservoir condensate gas multiphase flow phase behavior transient flow PSEUDO-PRESSURE production prediction
下载PDF
An Improved Coupled Level Set and Continuous Moment-of-Fluid Method for Simulating Multiphase Flows with Phase Change
2
作者 Zhouteng Ye Cody Estebe +8 位作者 Yang Liu Mehdi Vahab Zeyu Huang Mark Sussman Alireza Moradikazerouni Kourosh Shoele Yongsheng Lian Mitsuhiro Ohta M.Yousuff Hussaini 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1034-1069,共36页
An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MO... An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MOF difficulties in computing solutions to problems in which surface tension forces are crucial for understanding salient flow mechanisms.The Continuous MOF(CMOF)method is motivated in this article.The CMOF reconstruction method inherently removes the"checkerboard instability"that persists when using the MOF method on surface tension driven multiphase(multimaterial)flows.The CMOF reconstruction algorithm is accelerated by coupling the CMOF method to the level set method and coupling the CMOF method to a decision tree machine learning(ML)algorithm.Multiphase flow examples are shown in the two-dimensional(2D),three-dimensional(3D)axisymmetric"RZ",and 3D coordinate systems.Examples include two material and three material multiphase flows:bubble formation,the impingement of a liquid jet on a gas bubble in a cryogenic fuel tank,freezing,and liquid lens dynamics. 展开更多
关键词 Moment-of-Fluid(MOF) Surface tension Two phase flow phase change Deforming boundaries with change(s)in topology Two-dimensional(2D) Three-dimensional(3D)axisymmetric 3D
下载PDF
Phase-Based Optical Flow Method with Optimized Parameter Settings for Enhancing Displacement Measurement Adaptability
3
作者 Zhaoxin Peng Menglian Liu +2 位作者 Zhiliang Wang Wei Liu Xian Wang 《Open Journal of Applied Sciences》 2024年第5期1165-1184,共20页
To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizi... To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizing parameter settings is proposed. The optimized parameters include the best measurement points of the Region of Interest (ROI) and the levels of pyramid filters. Additionally, to address the issue of updating reference frames in practical applications due to the difficulty in estimating the maximum effective measurement value, a mechanism for dynamically updating reference frames is introduced. Experimental results demonstrate that compared to representative image gradient-based displacement measurement methods, the proposed method exhibits higher measurement accuracy in engineering applications. This provides reliable data support for structural damage identification research based on vibration signals and is expected to broaden the engineering application prospects for structural health monitoring. 展开更多
关键词 Displacement Measurement phase-Based Optical flow Optimized Parameter Setting
下载PDF
Numerical Solutions of the Classical and Modified Buckley-Leverett Equations Applied to Two-Phase Fluid Flow
4
作者 Raphael de O. Garcia Graciele P. Silveira 《Open Journal of Fluid Dynamics》 2024年第3期184-204,共21页
Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t... Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement. 展开更多
关键词 Computational Fluid Dynamics Buckley-Leverett Equation Numerical Methods Two-phase Fluid flow
下载PDF
Flow Characteristics Analysis of TC18 Titanium Alloy during Hot Deformation Based on Phase Transformation
5
作者 SUN Tao TENG Haihao +2 位作者 JIANG Xiaojuan TENG Shuman ZHOU Jie 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1418-1425,共8页
An accurate flow stress model was established by considering the parameters of strain rate,strain and temperature as well asβ→a+βphase transformation in order to develop the plastic forming theory of TC18 titanium ... An accurate flow stress model was established by considering the parameters of strain rate,strain and temperature as well asβ→a+βphase transformation in order to develop the plastic forming theory of TC18 titanium alloy.Firstly,the phase transition kinetics of TC18 titanium alloy during isothermal and continuous cooling at 1073 and 1273 K was studied by thermodynamic calculation,meanwhile,the relationship of volume fraction of phase transition with temperature and time was obtained.Constitutive models were calculated by investigating flow behaviors under hot compression tests with the strain rates of 0.001-1s^(-1) and temperatures of 973-1223 K in the singleβand a+βregions in TC18 titanium alloy,respectively.By combining the phase transformation dynamic kinetics with constitutive models,an accurate flow stress model was established,providing theoretical basis and data support for the hot forging of TC18 titanium alloy. 展开更多
关键词 constitutive modeling TC18 titanium alloy phase transformation flow stress
下载PDF
Experimental Investigation of Regular or Wavy Two-Phase Flow in a Manifold
6
作者 Xiaowei Nie Lihui Ma +7 位作者 Yiqiu Xu Dong Sun Weibo Zheng Liang Zhou Xiaodong Wang Xiaohan Zhang Weijia Dong Yunfei Li 《Fluid Dynamics & Materials Processing》 EI 2023年第1期37-50,共14页
An experimental study was conducted to investigate the properties of stratified regular or wavy two-phase flow in two parallel separators located after a manifold.A total of 103 experiments with various gas and liquid... An experimental study was conducted to investigate the properties of stratified regular or wavy two-phase flow in two parallel separators located after a manifold.A total of 103 experiments with various gas and liquid velocity combinations in three inlet pipes were conducted,including 77 groups of outlet pipe resistance symmetry and 26 groups of outlet pipe resistance asymmetry trials.The experimental results have revealed that when the gas-liquid flow rate is low,the degree of uneven splitting is high,and“extreme”conditions are attained.When the superficial gas velocity is greater than that established in the extreme case,the direction of the liquid-phase displacement is reversed,while that of the gas remains unchanged.Thus,the degree of gas phase bias tends to be mitigated with an increase in the gas velocity,while the uneven splitting degree of liquid approaches 10%.Finally,varying the gas-phase outlet pipe resistance is shown to effectively change the gas-liquid two-phase flow distribution. 展开更多
关键词 Uneven phase distribution two-phase flow MANIFOLD asymmetric resistance
下载PDF
Mechanisms of fracture propagation from multi-cluster using a phase field based HMD coupling model in fractured reservoir
7
作者 Yun-Jin Wang Bo Wang +6 位作者 Hang Su Tu Chang Ren-Cheng Dong Li-Zhe Li Wei-Yu Tang Ting-Xue Jiang Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1829-1851,共23页
Natural fractures(NFs)are common in shale and tight reservoirs,where staged multi-cluster fracturing of horizontal wells is a prevalent technique for reservoir stimulation.While NFs and stress interference are recogni... Natural fractures(NFs)are common in shale and tight reservoirs,where staged multi-cluster fracturing of horizontal wells is a prevalent technique for reservoir stimulation.While NFs and stress interference are recognized as significant factors affecting hydraulic fracture(HF)propagation,the combined influence of these factors remains poorly understood.To address this knowledge gap,a novel coupled hydromechanical-damage(HMD)model based on the phase field method is developed to investigate the propagation of multi-cluster HFs in fractured reservoirs.The comprehensive energy functional and control functions are established,while incorporating dynamic fluid distribution between multiple perforation clusters and refined changes in rock mechanical parameters during hydraulic fracturing.The HMD coupled multi-cluster HF propagation model investigates various scenarios,including single HF and single NF,reservoir heterogeneity,single HF and NF clusters,and multi-cluster HFs with NF clusters.The results show that the HMD coupling model can accurately capture the impact of approach angle(θ),stress difference and cementation strength on the interaction of HF and NF.The criterion of the open and cross zones is not fixed.The NF angle(a)is not a decisive parameter to discriminate the interaction.According to the relationship between approach angle(θ)and NF angle(a),the contact relationship of HF can be divided into three categories(θ=a,θ<a,andθ>a).The connected NF can increase the complexity of HF by inducing it to form branch fracture,resulting in a fractal dimension of HF as high as2.1280 at angles of±45°.Inter-fracture interference from the heel to the toe of HF shows the phenomenon of no,strong and weak interference.Interestingly,under the influence of NFs,distant HFs from the injection can become dominant fractures.However,as a gradually increases,inter-fracture stress interference becomes the primary factor influencing HF propagation,gradually superseding the dominance of NF induced fractures. 展开更多
关键词 HMD coupling phase field Natural fracture flow distribution Hydraulic fracturing Inter-fracture interference
下载PDF
Effect of droplet characteristics on liquid-phase distribution in spray zone of internal mixing air-mist nozzle
8
作者 Wei-li Wu Chang-gui Cheng +2 位作者 Yang Li Shi-fa Wei De-li Chen 《China Foundry》 SCIE EI CAS CSCD 2024年第2期185-196,共12页
In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In ord... In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction. 展开更多
关键词 continuous casting secondary cooling zone internal mixing air-mist nozzle droplet characteristics liquid phase distribution water flow rate
下载PDF
Effect of forced lamina flow on microsegregation simulated by phase field method quantitatively 被引量:4
9
作者 王军伟 王智平 +3 位作者 路阳 朱昌盛 冯力 肖荣振 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期391-397,共7页
The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled wi... The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled with flow field. The microsegregation, concentration maximum value, boundary thickness of concentration near upstream dendrite and normal to flow dendrite, and downstream dendrite were studied quantitatively in the case of forced lamia flow. The simulation results show that solute field and flow field interact complexly. Compared with melt without flow, in front of upstream dendrite tip, the concentration boundary thickness is the lowest and the concentration maximum value is the smallest for melt with flow. However, in front of downstream dendrite tip, the results are just the opposite. The zone of poor Cu in upstream dendrite where is the most severely microsegregation and shrinkage cavity is wider and the concentration is lower for melt with flow than that without flow. 展开更多
关键词 computer simulation phase field method solidification forced lamina flow MICROSEGREGATION solute redistribution shrinkage cavity
下载PDF
INTERNET TRAFFIC DATA FLOW FORECAST BY RBF NEURAL NETWORK BASED ON PHASE SPACE RECONSTRUCTION 被引量:4
10
作者 陆锦军 王执铨 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期316-322,共7页
Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a n... Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a network flow. Some parameters, such as the correlative dimension and the Lyapunov exponent are calculated, and the chaos characteristic is proved to exist in Internet traffic data flows. A neural network model is construct- ed based on radial basis function (RBF) to forecast actual Internet traffic data flow. Simulation results show that, compared with other forecasts of the forward-feedback neural network, the forecast of the RBF neural network based on the chaos theory has faster learning capacity and higher forecasting accuracy. 展开更多
关键词 chaos theory phase space reeonstruction Lyapunov exponent tnternet data flow radial basis function neural network
下载PDF
Review of gas-solid two phase flow rate-concentration detection technology 被引量:1
11
作者 刘秀 刘吉 +2 位作者 张静 颜兵 史璐璐 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第2期185-192,共8页
The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of r... The indirect detection method basic principle of rate and concentration,application range and research results on gassolid two phase flow were discussed.The present development situation and the existing problems of rate and concentration detection technology were analyzed and summarized.Emphatically analyzed the existing problems in the industrial application and research status of electrostatic method in measuring phase concentration.Design criterion of electrostatic phase concentration sensor is given,the superiority and wide industrial application prospect of the sensor used for phase concentration measurement are clarified. 展开更多
关键词 gas-solid two phase flow rate-concentration electrostatic method
下载PDF
LOCAL NONLINEAR CHARACTERISTICS OF GAS LIQUID SOLID THREE PHASE SELF ASPIRATED REVERSED FLOW JET LOOP REACTOR
12
作者 闻建平 梁岚 +2 位作者 刘明言 张金利 胡宗定 《Transactions of Tianjin University》 EI CAS 1998年第2期1-5,共5页
Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressur... Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressure fluctuations obtained from a gas liquid solid three phase self aspirated reversed flow jet loop reactor,respectively.The results indicate that the local fractal dimensions and the local largest Lyapunov exponents in both the jet region and the tubular region inside the draft tube increase with the increase in the jet liquid flowrates and the solid loadings,the local fractal dimension profiles are similar to those of the largest Lyapunov exponent,the local largest lyapunov exponents are positive for all cases,and the flow behavior of such a reactor is chaotic.The local nonlinear characteristic parameters such as the local fractal dimension and the local largest Lyapunov exponent could be applied to further study the flow properties such as the flow regime transitions and flow structures of this three phase jet loop reactor. 展开更多
关键词 three phase self aspirated reversed flow jet loop reactor local fractal dimension local largest Lyapunov exponent
下载PDF
Effect of solids phase wall boundary condition on simulation of gas-solids flow characteristics in riser 被引量:1
13
作者 周新宇 高金森 +1 位作者 徐春明 蓝兴英 《化工学报》 EI CAS CSCD 北大核心 2012年第4期1063-1069,共7页
下载PDF
Gas Condensate Two Phase Flow Performance in Porous Media Considering Capillary Number and Non-Darcy Effects
14
作者 覃斌 李相方 程时清 《Petroleum Science》 SCIE CAS CSCD 2004年第3期49-55,共7页
Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates ne... Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates near the well bore region. How to describe the condensate blockage effect exactly has been a continuous research topic. However, up to now, the present methods usually over-estimate or underestimate the productivity reduction due to an incorrect understanding of the mechanism of flow in porous medium, which inevitably results in an inaccurate prediction of production performance. It has been found in recent numerous theoretical and experimental studies that capillary number and non-Darcy flow have significant influence on relative permeability in regions near the well bore. The two effects impose opposite impacts on production performance, thus leading to gas condensate flow showing characteristics different from general understanding. It is significant for prediction of performance in gas condensate wells to understand the two effects exactly. The aim of the paper is to describe and analyze the flow dynamics in porous media accurately during the production of gas condensate reservoirs. Based on the description of three-zone flow mechanism, capillary number and non-Darcy effect are incorporated in the analysis of relative permeability, making it possible to describe the effect of condensate blockage. The effect of capillary number and inertial flow on gas and condensate relative permeability is analyzed in detail. Novel Inflow Performance Relation (IPR) models considering high velocity effects are formulated and the contrast analysis of different IPR models is conducted. The result shows that the proposed method can help predict the production performance and productivity more accurately than conventional methods. 展开更多
关键词 Gas condensate two-phase flow porous media capillary number non-Darcy effect
下载PDF
Annular multiphase flow behavior during deep water drilling and the effect of hydrate phase transition 被引量:20
15
作者 Wang Zhiyuan Sun Baojiang 《Petroleum Science》 SCIE CAS CSCD 2009年第1期57-63,共7页
It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conser... It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conservation equations, were established for annular flow with gas hydrate phase transition during gas kick. The behavior of annular multiphase flow with hydrate phase transition was investigated by analyzing the hydrate-forming region, the gas fraction in the fluid flowing in the annulus, pit gain, bottom hole pressure, and shut-in casing pressure. The simulation shows that it is possible to move the hydrate-forming region away from sea floor by increasing the circulation rate. The decrease in gas volume fraction in the annulus due to hydrate formation reduces pit gain, which can delay the detection of well kick and increase the risk of hydrate plugging in lines. Caution is needed when a well is monitored for gas kick at a relatively low gas production rate, because the possibility of hydrate presence is much greater than that at a relatively high production rate. The shut-in casing pressure cannot reflect the gas kick due to hydrate formation, which increases with time. 展开更多
关键词 Annular multiphase flow phase transition natural gas hydrate gas kick
下载PDF
NUMERICAL SIMULATION OF CHARGED GAS-LIQUID TWO PHASE JET FLOW IN ELECTROSTATIC SPRAYING 被引量:6
16
作者 Wang Ze,Jin Hanhui,Wang Junfeng,Luo Tiqian (School of Energy and Power,Jiangsu University of Science and Technology) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2001年第3期266-270,共5页
Multi-fluid k-e-kp, two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, cha... Multi-fluid k-e-kp, two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, charged gas-liquid two-phase turbulence can be well predicted by this model. 展开更多
关键词 ELECTROSTATICS Two phase flow TURBULENCE Numerical simulation
下载PDF
Effect of acceleration threshold on the phase transition in a cellular automaton traffic flow model 被引量:4
17
作者 金诚杰 王炜 +1 位作者 高坤 姜锐 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期283-288,共6页
In this paper, we incorporate new parameters into a cellular automaton traffic flow model proposed in our previous paper [Jin et al. 2010 J. Stat. Mech. 2010 P03018]. Through these parameters, we adjust the anticipate... In this paper, we incorporate new parameters into a cellular automaton traffic flow model proposed in our previous paper [Jin et al. 2010 J. Stat. Mech. 2010 P03018]. Through these parameters, we adjust the anticipated velocity and the acceleration threshold separately. It turns out that the flow rate of synchronized flow mainly changes with the anticipated velocity, and the F →S phase transition feature mainly changes with the acceleration threshold. Therefore, we conclude that the acceleration threshold is the major factor affecting the F → S phase transition. 展开更多
关键词 traffic flow cellular automaton synchronized flow phase transition
下载PDF
RESEARCH ON METHOD TO CALCULATE VELOCITIES OF SOLID PHASE AND LIQUID PHASE IN DEBRIS FLOW 被引量:4
18
作者 陈洪凯 唐红梅 陈野鹰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第3期399-408,共10页
Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two... Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction, then general equations of velocities of solid phase and liquid phase were founded in two-phase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation. 展开更多
关键词 debris flow two-phase fluid velocities of solid phase and liquid phase calculation method VERIFICATION
下载PDF
Prediction of elevator traffic flow based on SVM and phase space reconstruction 被引量:4
19
作者 唐海燕 齐维贵 丁宝 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第3期111-114,共4页
To make elevator group control system better follow the change of elevator traffic flow (ETF) in order to adjust the control strategy,the prediction method of support vector machine (SVM) in combination with phase spa... To make elevator group control system better follow the change of elevator traffic flow (ETF) in order to adjust the control strategy,the prediction method of support vector machine (SVM) in combination with phase space reconstruction has been proposed for ETF.Firstly,the phase space reconstruction for elevator traffic flow time series (ETFTS) is processed.Secondly,the small data set method is applied to calculate the largest Lyapunov exponent to judge the chaotic property of ETF.Then prediction model of ETFTS based on SVM is founded.Finally,the method is applied to predict the time series for the incoming and outgoing passenger flow respectively using ETF data collected in some building.Meanwhile,it is compared with RBF neural network model.Simulation results show that the trend of factual traffic flow is better followed by predictive traffic flow.SVM algorithm has much better prediction performance.The fitting and prediction of ETF with better effect are realized. 展开更多
关键词 support vector machine phase space reconstruction prediction of elevator traffic flow RBF neural network
下载PDF
Phase transition in evolution of traffic flow with scale-free property 被引量:2
20
作者 沈波 高自友 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第9期3284-3288,共5页
This paper investigates the behaviour of traffic flow in traffic systems with a new model based on the NaSch model and cluster approximation of mean-field theory. The proposed model aims at constructing a mapping rela... This paper investigates the behaviour of traffic flow in traffic systems with a new model based on the NaSch model and cluster approximation of mean-field theory. The proposed model aims at constructing a mapping relationship between the microcosmic behaviour and the macroscopic property of traffic flow. Results demonstrate that scale-free phenomenon of the evolution network becomes obvious when the density value of traffic flow reaches at the critical point of phase transition from free flow to traffic congestion, and jamming is limited in this scale-free structure. 展开更多
关键词 phase transition traffic flow scale-free property cellular automata
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部