This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.Th...This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.The model integrates the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)and Convolutional Long Short Term Memory Neural Network(ConvLSTM)to predict short-term taxi travel demand.The CEEMDAN decomposition method effectively decomposes time series data into a set of modal components,capturing sequence characteristics at different time scales and frequencies.Based on the sample entropy value of components,secondary processing of more complex sequence components after decomposition is employed to reduce the cumulative prediction error of component sequences and improve prediction efficiency.On this basis,considering the correlation between the spatiotemporal trends of short-term taxi traffic,a ConvLSTM neural network model with Long Short Term Memory(LSTM)time series processing ability and Convolutional Neural Networks(CNN)spatial feature processing ability is constructed to predict the travel demand for urban taxis.The combined prediction model is tested on a taxi travel demand dataset in a certain area of Beijing.The results show that the CEEMDAN-ConvLSTM prediction model outperforms the LSTM,Autoregressive Integrated Moving Average model(ARIMA),CNN,and ConvLSTM benchmark models in terms of Symmetric Mean Absolute Percentage Error(SMAPE),Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and R2 metrics.Notably,the SMAPE metric exhibits a remarkable decline of 21.03%with the utilization of our proposed model.These results confirm that our study provides a highly accurate and valid model for taxi travel demand forecasting.展开更多
The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features.Electric kickboards are gradually growing in popularity in tourist...The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features.Electric kickboards are gradually growing in popularity in tourist and education-centric localities.In the upcoming arrival of electric kickboard vehicles,deploying a customer rental service is essential.Due to its freefloating nature,the shared electric kickboard is a common and practical means of transportation.Relocation plans for shared electric kickboards are required to increase the quality of service,and forecasting demand for their use in a specific region is crucial.Predicting demand accurately with small data is troublesome.Extensive data is necessary for training machine learning algorithms for effective prediction.Data generation is a method for expanding the amount of data that will be further accessible for training.In this work,we proposed a model that takes time-series customers’electric kickboard demand data as input,pre-processes it,and generates synthetic data according to the original data distribution using generative adversarial networks(GAN).The electric kickboard mobility demand prediction error was reduced when we combined synthetic data with the original data.We proposed Tabular-GAN-Modified-WGAN-GP for generating synthetic data for better prediction results.We modified The Wasserstein GAN-gradient penalty(GP)with the RMSprop optimizer and then employed Spectral Normalization(SN)to improve training stability and faster convergence.Finally,we applied a regression-based blending ensemble technique that can help us to improve performance of demand prediction.We used various evaluation criteria and visual representations to compare our proposed model’s performance.Synthetic data generated by our suggested GAN model is also evaluated.The TGAN-Modified-WGAN-GP model mitigates the overfitting and mode collapse problem,and it also converges faster than previous GAN models for synthetic data creation.The presented model’s performance is compared to existing ensemble and baseline models.The experimental findings imply that combining synthetic and actual data can significantly reduce prediction error rates in the mean absolute percentage error(MAPE)of 4.476 and increase prediction accuracy.展开更多
Taxi demand prediction is a crucial component of intelligent transportation system research.Compared to region-based demand prediction,origin-destination(OD)demand prediction has a wide range of potential applications...Taxi demand prediction is a crucial component of intelligent transportation system research.Compared to region-based demand prediction,origin-destination(OD)demand prediction has a wide range of potential applications,including real-time matching,idle vehicle allocation,ridesharing services,and dynamic pricing,among others.However,because OD demand involves complex spatiotemporal dependence,research in this area has been limited thus far.In this paper,we first review existing research from four perspectives:topology construction,temporal and spatial feature processing,and other relevant factors.We then elaborate on the advantages and limitations of OD prediction methods based on deep learning architecture theory.Next,we discuss ongoing challenges in OD prediction,such as dynamics,spatiotemporal dependence,semantic differentiation,time window selection,and data sparsity problems,and summarize and compare potential solutions to each challenge.These findings offer valuable insights for model selection in OD demand prediction.Finally,we provide public datasets and open-source code,along with suggestions for future research directions.展开更多
Missile is an important weapon system of the army.The spare parts of missile equipment are significant effect on military operations.In order to improve the mission completion rate of missile equipment in wartime,this...Missile is an important weapon system of the army.The spare parts of missile equipment are significant effect on military operations.In order to improve the mission completion rate of missile equipment in wartime,this paper introduces data sensing method to forecast the demand of valuable spare parts of missile equipment dynamically.Firstly,the information related to valuable spare parts of missile equipment was obtained by data sensing,and the sample size was determined by Bernoulli uniform sampling probability.Secondly,according to the data quality of multi-source and multi-modal,the data requirement for dynamic demand prediction of valuable spare parts of missile equipment was obtained.Finally,according to the characteristics of the spare parts,the life of the spare parts was predicted,realizing the dynamic prediction of the demand for valuable spare parts of missile equipment.The results show that the demand of valuable spare parts of missile equipment can be predicted dynamically by using this method,the accuracy is higher than 95%,and the real-time performance is more excellent.展开更多
Based on the study of the relationship between structure and feedback of China’s natural gas demand system, this paper establishes a system dynamics model. In order to simulate the total demand and consumption struct...Based on the study of the relationship between structure and feedback of China’s natural gas demand system, this paper establishes a system dynamics model. In order to simulate the total demand and consumption structure of natural gas in China, we set up seven scenarios by changing some of the parameters of the model. The results showed that the total demand of natural gas would increase steadily year by year and reach in the range from 3600 to 4500 billion cubic meters in 2035. Furthermore, in terms of consumption structure, urban gas consumption would still be the largest term, followed by the gas consumption as industrial fuel, gas power generation and natural gas chemical industry. In addition, compared with the population growth, economic development still plays a dominant role in the natural gas demand growth, the impact of urbanization on urban gas consumption is significant, and the promotion of natural gas utilization technology can effectively reduce the total consumption of natural gas.展开更多
The research intends to make scientific prediction of the logistics demand of Nanping City based on mathematical model calculation so as to provide reasonable strategic guidance for the sustainable and healthy develop...The research intends to make scientific prediction of the logistics demand of Nanping City based on mathematical model calculation so as to provide reasonable strategic guidance for the sustainable and healthy development of urban logistics industry.It constructs a comprehensive index system composed of freight volume and other eight relevant economic indices to form the foundation for the model construction.Combining forecasting models of principal component regression and GM(1,1)together,it makes mathematical calculation to predict the logistics demand of Nanping City from the years 2018 to 2022.The research makes systematical analyses of the indices influencing the precise prediction of logistics demand from a new perspective,which offers an innovative and practical option for urban logistics prediction.In line with the prediction,it offers some suggestions for the improvement of demand prediction and some strategies for the better development of the logistics industry in Nanping City.展开更多
In this study,related models of alloy purchasing decision system in the Baoshan base of Baosteel are discussed.First,the corresponding relationship between steel grades and alloy consumption is established through met...In this study,related models of alloy purchasing decision system in the Baoshan base of Baosteel are discussed.First,the corresponding relationship between steel grades and alloy consumption is established through metallurgical-mechanism modeling and statistical analysis.Then,the alloy-demand prediction model based on alloy unit consumption and time series analysis is developed by combining sales plans and historical data.Finally,the alloy purchasing and inventory optimization model is developed to minimize the total cost of purchase and storage by combining inventory optimization theories.展开更多
To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross ...To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross domestic product(GDP),consumer price index(CPI),total import and export volume,port's cargo throughput,total retail sales of consumer goods,total fixed asset investment,highway mileage,and resident population,to form the foundation for the model calculation.Based on the least square method(LSM)to fit the parameters,the study obtains an accurate mathematical model and predicts the changes of each index in the next five years.Using artificial intelligence software,the research establishes the logistics demand model of multi-layer perceptron(MLP)neural network,makes an empirical analysis on the logistics demand of Quanzhou City,and predicts its logistics demand in the next five years,which provides some references for formulating logistics planning and development strategy.展开更多
Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve...Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples.展开更多
According to the cultivated area and grain yield during 1996-2008 and adopting the prediction method of farmland demand based on food security,five indexes,including the cultivated area,grain sown area,yearly food yie...According to the cultivated area and grain yield during 1996-2008 and adopting the prediction method of farmland demand based on food security,five indexes,including the cultivated area,grain sown area,yearly food yield per unit area,total population and per capita grain yield,are selected to analyze and predict the farmland demand in Yunnan Province in 2020.As the prediction results of each index show,the total population of Yunnan Province in 2020 will reach 51 464 000,significantly higher than the upper bound(50 million);the per capita food demand of Yunnan Province in 2020 will be 400 kg below the bottom line of the well-off type;food self-sufficient ratio will be respectively given the value of 100%,95% and 90% in three schemes;the prediction will be conducted with the yearly food yield per unit area at an average annual growth rate of 2.5% and 3.0% in two schemes;the rate of grain sowing in 2010 is determined to be 66%.As the prediction results of farmland demand show,there are totally 6 schemes about farmland demand in Yunnan Province obtained through analysis,among them,scheme Ⅰ is difficult to achieve,the prediction results of scheme Ⅳ,Ⅴ and Ⅵ are relatively low,which do not conform to the state policies and regulations to protect farmland and are also not conductive for ensuring the food security;scheme Ⅱ and Ⅲ are close to each other,but scheme Ⅲ obtains better prediction results and determines the farmland demand of Yunnan Province in 2020 based on food security to be 5.9 million so as to ensure the provincial food security and realize the "red line" of basic provincial food self-sufficiency.展开更多
This paper takes the total yield of products that need refrigerated transport as the impact factors of transport aggregate of cold chain logistics,such as meat,aquatic products,quick-frozen noodle,fruits,vegetables,da...This paper takes the total yield of products that need refrigerated transport as the impact factors of transport aggregate of cold chain logistics,such as meat,aquatic products,quick-frozen noodle,fruits,vegetables,dairy,and medicine.Through selecting the consumption data of urban residents on transported products via cold chain in Jiangsu Province from 2005 to 2000 as sample,this paper establishes grey prediction model GM(1,1) of cold chain logistics demand and uses DPS7.05 software for test,to predict the cold chain logistics demand of urban residents in Jiangsu Province during the Twelfth Five-Year Plan period.The results show that in the period 2010-2015,the cold chain logistics demand of urban residents in Jiangsu Province is 1 151.589 1,1 185.136 6,1 219.661 3,1 255.191 8,1 291.757 3,1 329.388 1 t respectively;in the period 2005-2010,the cold chain logistics demand of urban residents in Jiangsu Province increases at annual growth rate of 3.9%;in the period 2011-2015,the growth rate declines to some extent,increasing slowly at rate of 2.9%.展开更多
The development of vehicle-to-everything and cloud computing has brought new opportunities and challenges to the automobile industry.In this paper,a commuter vehicle demand torque prediction method based on historical...The development of vehicle-to-everything and cloud computing has brought new opportunities and challenges to the automobile industry.In this paper,a commuter vehicle demand torque prediction method based on historical vehicle speed information is proposed,which uses machine learning to predict and analyze vehicle demand torque.Firstly,the big data of vehicle driving is collected,and the driving data is cleaned and features extracted based on road information.Then,the vehicle longitudinal driving dynamics model is established.Next,the vehicle simulation simulator is established based on the longitudinal driving dynamics model of the vehicle,and the driving torque of the vehicle is obtained.Finally,the travel is divided into several accelerationcruise-deceleration road pairs for analysis,and the vehicle demand torque is predicted by BP neural network and Gaussian process regression.展开更多
A new model was developed to predict forestland demand of China during the years of 2010-2050 in terms of the concept of forest ecosystem services. On the basis of the relationship between forest ecosystem services an...A new model was developed to predict forestland demand of China during the years of 2010-2050 in terms of the concept of forest ecosystem services. On the basis of the relationship between forest ecosystem services and classified forest management, we hypothesized that the ecological-forest provides ecological services, whereas commercial-forest supplies wood and timber production, and the influences of the growth of population, social-economic development target, forest management methods and the technology changes on forest resources were also taken into account. The prediction reveals that the demand of total forestland of China will be 244.8, 261.2 and 362.2 million ha by the year 2010, 2020 and 2050, respectively. The results demonstrated that China will be confronted with a shortage of forest resources, especially with lack of ecological-oriented forests, in the future. It is suggested that sustainable management of forest resources must be reinforced and more attention should be drown no enhancing the service function of forest ecosystem.展开更多
Accurate demand forecasting for online ride-hailing contributes to balancing traffic supply and demand,and improving the service level of ride-hailing platforms.In contrast to previous studies,which have primarily foc...Accurate demand forecasting for online ride-hailing contributes to balancing traffic supply and demand,and improving the service level of ride-hailing platforms.In contrast to previous studies,which have primarily focused on the inflow or outflow demands of each zone,this study proposes a conditional generative adversarial network with a Wasserstein divergence objective(CWGAN-div)to predict ride-hailing origin-destination(OD)demand matrices.Residual blocks and refined loss functions help to enhance the stability of model training.Interpretable conditional information is employed to capture external spatiotemporal dependencies and guide the model towards generating more precise results.Empirical analysis using ride-hailing data from Manhattan,New York City,demon-strates that our proposed CWGAN-div model can effectively predict the network-wide OD matrix and exhibits strong convergence performance.Comparative experiments also show that the CWGAN-div outperforms other benchmarking methods.Consequently,the proposed model displays potential for network-wide ride-hailing OD demand prediction.展开更多
The effect of two nighttime ventilation strategies on cooling and heating energy use is investigated for a prototype office building in several northern America climates, using hourly building energy simulation softwa...The effect of two nighttime ventilation strategies on cooling and heating energy use is investigated for a prototype office building in several northern America climates, using hourly building energy simulation software (DOE2.1E). The strategies include: scheduled-driven nighttime ventilation and a predictive method for nighttime ventilation. The maximum possible energy savings and peak demand reduction in each climate is analyzed as a function of ventilation rate, indoor-outdoor temperature difference, and building thermal mass. The results show that nighttime ventilation could save up to 32% cooling energy in an office building, while the total energy and peak demand savings for the fan and cooling is about 13% and 10%, respectively. Consequently, finding the optimal control parameters for the nighttime ventilation strategies is very important. The performance of the two strategies varies in different climates. The predictive nighttime ventilation worked better in weather conditions with fairly smooth transition from heating to cooling season.展开更多
基金supported by the Surface Project of the National Natural Science Foundation of China(No.71273024)the Fundamental Research Funds for the Central Universities of China(2021YJS080).
文摘This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.The model integrates the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)and Convolutional Long Short Term Memory Neural Network(ConvLSTM)to predict short-term taxi travel demand.The CEEMDAN decomposition method effectively decomposes time series data into a set of modal components,capturing sequence characteristics at different time scales and frequencies.Based on the sample entropy value of components,secondary processing of more complex sequence components after decomposition is employed to reduce the cumulative prediction error of component sequences and improve prediction efficiency.On this basis,considering the correlation between the spatiotemporal trends of short-term taxi traffic,a ConvLSTM neural network model with Long Short Term Memory(LSTM)time series processing ability and Convolutional Neural Networks(CNN)spatial feature processing ability is constructed to predict the travel demand for urban taxis.The combined prediction model is tested on a taxi travel demand dataset in a certain area of Beijing.The results show that the CEEMDAN-ConvLSTM prediction model outperforms the LSTM,Autoregressive Integrated Moving Average model(ARIMA),CNN,and ConvLSTM benchmark models in terms of Symmetric Mean Absolute Percentage Error(SMAPE),Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and R2 metrics.Notably,the SMAPE metric exhibits a remarkable decline of 21.03%with the utilization of our proposed model.These results confirm that our study provides a highly accurate and valid model for taxi travel demand forecasting.
基金This work was supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0016977,The Establishment Project of Industry-University Fusion District).
文摘The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features.Electric kickboards are gradually growing in popularity in tourist and education-centric localities.In the upcoming arrival of electric kickboard vehicles,deploying a customer rental service is essential.Due to its freefloating nature,the shared electric kickboard is a common and practical means of transportation.Relocation plans for shared electric kickboards are required to increase the quality of service,and forecasting demand for their use in a specific region is crucial.Predicting demand accurately with small data is troublesome.Extensive data is necessary for training machine learning algorithms for effective prediction.Data generation is a method for expanding the amount of data that will be further accessible for training.In this work,we proposed a model that takes time-series customers’electric kickboard demand data as input,pre-processes it,and generates synthetic data according to the original data distribution using generative adversarial networks(GAN).The electric kickboard mobility demand prediction error was reduced when we combined synthetic data with the original data.We proposed Tabular-GAN-Modified-WGAN-GP for generating synthetic data for better prediction results.We modified The Wasserstein GAN-gradient penalty(GP)with the RMSprop optimizer and then employed Spectral Normalization(SN)to improve training stability and faster convergence.Finally,we applied a regression-based blending ensemble technique that can help us to improve performance of demand prediction.We used various evaluation criteria and visual representations to compare our proposed model’s performance.Synthetic data generated by our suggested GAN model is also evaluated.The TGAN-Modified-WGAN-GP model mitigates the overfitting and mode collapse problem,and it also converges faster than previous GAN models for synthetic data creation.The presented model’s performance is compared to existing ensemble and baseline models.The experimental findings imply that combining synthetic and actual data can significantly reduce prediction error rates in the mean absolute percentage error(MAPE)of 4.476 and increase prediction accuracy.
基金supported by 2022 Shenyang Philosophy and Social Science Planning under grant SY202201Z,Liaoning Provincial Department of Education Project under grant LJKZ0588.
文摘Taxi demand prediction is a crucial component of intelligent transportation system research.Compared to region-based demand prediction,origin-destination(OD)demand prediction has a wide range of potential applications,including real-time matching,idle vehicle allocation,ridesharing services,and dynamic pricing,among others.However,because OD demand involves complex spatiotemporal dependence,research in this area has been limited thus far.In this paper,we first review existing research from four perspectives:topology construction,temporal and spatial feature processing,and other relevant factors.We then elaborate on the advantages and limitations of OD prediction methods based on deep learning architecture theory.Next,we discuss ongoing challenges in OD prediction,such as dynamics,spatiotemporal dependence,semantic differentiation,time window selection,and data sparsity problems,and summarize and compare potential solutions to each challenge.These findings offer valuable insights for model selection in OD demand prediction.Finally,we provide public datasets and open-source code,along with suggestions for future research directions.
文摘Missile is an important weapon system of the army.The spare parts of missile equipment are significant effect on military operations.In order to improve the mission completion rate of missile equipment in wartime,this paper introduces data sensing method to forecast the demand of valuable spare parts of missile equipment dynamically.Firstly,the information related to valuable spare parts of missile equipment was obtained by data sensing,and the sample size was determined by Bernoulli uniform sampling probability.Secondly,according to the data quality of multi-source and multi-modal,the data requirement for dynamic demand prediction of valuable spare parts of missile equipment was obtained.Finally,according to the characteristics of the spare parts,the life of the spare parts was predicted,realizing the dynamic prediction of the demand for valuable spare parts of missile equipment.The results show that the demand of valuable spare parts of missile equipment can be predicted dynamically by using this method,the accuracy is higher than 95%,and the real-time performance is more excellent.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 71273021 and 7167030506)
文摘Based on the study of the relationship between structure and feedback of China’s natural gas demand system, this paper establishes a system dynamics model. In order to simulate the total demand and consumption structure of natural gas in China, we set up seven scenarios by changing some of the parameters of the model. The results showed that the total demand of natural gas would increase steadily year by year and reach in the range from 3600 to 4500 billion cubic meters in 2035. Furthermore, in terms of consumption structure, urban gas consumption would still be the largest term, followed by the gas consumption as industrial fuel, gas power generation and natural gas chemical industry. In addition, compared with the population growth, economic development still plays a dominant role in the natural gas demand growth, the impact of urbanization on urban gas consumption is significant, and the promotion of natural gas utilization technology can effectively reduce the total consumption of natural gas.
基金National Social Science Foundation of China(No.17CGJ002)Major Project of Education and Teaching Reform of Undergraduate Universities in Fujian Province,China(No.FBJG20190130)
文摘The research intends to make scientific prediction of the logistics demand of Nanping City based on mathematical model calculation so as to provide reasonable strategic guidance for the sustainable and healthy development of urban logistics industry.It constructs a comprehensive index system composed of freight volume and other eight relevant economic indices to form the foundation for the model construction.Combining forecasting models of principal component regression and GM(1,1)together,it makes mathematical calculation to predict the logistics demand of Nanping City from the years 2018 to 2022.The research makes systematical analyses of the indices influencing the precise prediction of logistics demand from a new perspective,which offers an innovative and practical option for urban logistics prediction.In line with the prediction,it offers some suggestions for the improvement of demand prediction and some strategies for the better development of the logistics industry in Nanping City.
基金sponsored by National Key Research and Development Program of China(No.2017YFB0304100)。
文摘In this study,related models of alloy purchasing decision system in the Baoshan base of Baosteel are discussed.First,the corresponding relationship between steel grades and alloy consumption is established through metallurgical-mechanism modeling and statistical analysis.Then,the alloy-demand prediction model based on alloy unit consumption and time series analysis is developed by combining sales plans and historical data.Finally,the alloy purchasing and inventory optimization model is developed to minimize the total cost of purchase and storage by combining inventory optimization theories.
基金Educational Research Project of Social Science for Young and Middle Aged Teachers in Fujian Province,China(No.JAS19371)Social Science Research Project of Education Department of Fujian Province,China(No.JAS160571)Key Project of Education and Teaching Reform of Undergraduate Universities in Fujian Province,China(No.FBJG20190130)。
文摘To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross domestic product(GDP),consumer price index(CPI),total import and export volume,port's cargo throughput,total retail sales of consumer goods,total fixed asset investment,highway mileage,and resident population,to form the foundation for the model calculation.Based on the least square method(LSM)to fit the parameters,the study obtains an accurate mathematical model and predicts the changes of each index in the next five years.Using artificial intelligence software,the research establishes the logistics demand model of multi-layer perceptron(MLP)neural network,makes an empirical analysis on the logistics demand of Quanzhou City,and predicts its logistics demand in the next five years,which provides some references for formulating logistics planning and development strategy.
基金supported by the Science and Technology Project of State Grid Shanxi Electric Power Research Institute:Research on Data-Driven New Power System Operation Simulation and Multi Agent Control Strategy(52053022000F).
文摘Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples.
基金Supported by National Natural Science Foundation of China(40861014)the Second National Land Survey of Yunnan Province
文摘According to the cultivated area and grain yield during 1996-2008 and adopting the prediction method of farmland demand based on food security,five indexes,including the cultivated area,grain sown area,yearly food yield per unit area,total population and per capita grain yield,are selected to analyze and predict the farmland demand in Yunnan Province in 2020.As the prediction results of each index show,the total population of Yunnan Province in 2020 will reach 51 464 000,significantly higher than the upper bound(50 million);the per capita food demand of Yunnan Province in 2020 will be 400 kg below the bottom line of the well-off type;food self-sufficient ratio will be respectively given the value of 100%,95% and 90% in three schemes;the prediction will be conducted with the yearly food yield per unit area at an average annual growth rate of 2.5% and 3.0% in two schemes;the rate of grain sowing in 2010 is determined to be 66%.As the prediction results of farmland demand show,there are totally 6 schemes about farmland demand in Yunnan Province obtained through analysis,among them,scheme Ⅰ is difficult to achieve,the prediction results of scheme Ⅳ,Ⅴ and Ⅵ are relatively low,which do not conform to the state policies and regulations to protect farmland and are also not conductive for ensuring the food security;scheme Ⅱ and Ⅲ are close to each other,but scheme Ⅲ obtains better prediction results and determines the farmland demand of Yunnan Province in 2020 based on food security to be 5.9 million so as to ensure the provincial food security and realize the "red line" of basic provincial food self-sufficiency.
基金Supporte by College Philosophical Social Science Foundation of Jiangsu Provincial Department of Education in 2009 (09SJB790008)Science and Technology Support Project of Huaian City in 2009(HAS2009045-1)Funds from Huaian Municipal Bureau of Communications
文摘This paper takes the total yield of products that need refrigerated transport as the impact factors of transport aggregate of cold chain logistics,such as meat,aquatic products,quick-frozen noodle,fruits,vegetables,dairy,and medicine.Through selecting the consumption data of urban residents on transported products via cold chain in Jiangsu Province from 2005 to 2000 as sample,this paper establishes grey prediction model GM(1,1) of cold chain logistics demand and uses DPS7.05 software for test,to predict the cold chain logistics demand of urban residents in Jiangsu Province during the Twelfth Five-Year Plan period.The results show that in the period 2010-2015,the cold chain logistics demand of urban residents in Jiangsu Province is 1 151.589 1,1 185.136 6,1 219.661 3,1 255.191 8,1 291.757 3,1 329.388 1 t respectively;in the period 2005-2010,the cold chain logistics demand of urban residents in Jiangsu Province increases at annual growth rate of 3.9%;in the period 2011-2015,the growth rate declines to some extent,increasing slowly at rate of 2.9%.
基金supported in part by National Natural Science Foundation(NNSF)of China(Nos.61803079,61890924,61991404)in part by Fundamental Research Funds for the Central Universities(No.N2108006)in part by Liaoning Revitalization Talents Program(No.XLYC1907087)。
文摘The development of vehicle-to-everything and cloud computing has brought new opportunities and challenges to the automobile industry.In this paper,a commuter vehicle demand torque prediction method based on historical vehicle speed information is proposed,which uses machine learning to predict and analyze vehicle demand torque.Firstly,the big data of vehicle driving is collected,and the driving data is cleaned and features extracted based on road information.Then,the vehicle longitudinal driving dynamics model is established.Next,the vehicle simulation simulator is established based on the longitudinal driving dynamics model of the vehicle,and the driving torque of the vehicle is obtained.Finally,the travel is divided into several accelerationcruise-deceleration road pairs for analysis,and the vehicle demand torque is predicted by BP neural network and Gaussian process regression.
基金the National Key Technologies R&D Program of China (2006BAD03A09)the National Science Fund of China (40841001)
文摘A new model was developed to predict forestland demand of China during the years of 2010-2050 in terms of the concept of forest ecosystem services. On the basis of the relationship between forest ecosystem services and classified forest management, we hypothesized that the ecological-forest provides ecological services, whereas commercial-forest supplies wood and timber production, and the influences of the growth of population, social-economic development target, forest management methods and the technology changes on forest resources were also taken into account. The prediction reveals that the demand of total forestland of China will be 244.8, 261.2 and 362.2 million ha by the year 2010, 2020 and 2050, respectively. The results demonstrated that China will be confronted with a shortage of forest resources, especially with lack of ecological-oriented forests, in the future. It is suggested that sustainable management of forest resources must be reinforced and more attention should be drown no enhancing the service function of forest ecosystem.
基金supported by the National Natural Science Foundation of China(Grant No.72371251)the National Science Foundation for Distinguished Young Scholars of Hunan Province(Grant No.2024JJ2080)+1 种基金the Excellent Youth Foundation of Hunan Education Department(Grant No.21B0015)the State Key Lab-oratory of Rail Traffic Control and Safety of Beijing Jiaotong Uni-v ersity,China(Gr ant No.RCS2022K004).
文摘Accurate demand forecasting for online ride-hailing contributes to balancing traffic supply and demand,and improving the service level of ride-hailing platforms.In contrast to previous studies,which have primarily focused on the inflow or outflow demands of each zone,this study proposes a conditional generative adversarial network with a Wasserstein divergence objective(CWGAN-div)to predict ride-hailing origin-destination(OD)demand matrices.Residual blocks and refined loss functions help to enhance the stability of model training.Interpretable conditional information is employed to capture external spatiotemporal dependencies and guide the model towards generating more precise results.Empirical analysis using ride-hailing data from Manhattan,New York City,demon-strates that our proposed CWGAN-div model can effectively predict the network-wide OD matrix and exhibits strong convergence performance.Comparative experiments also show that the CWGAN-div outperforms other benchmarking methods.Consequently,the proposed model displays potential for network-wide ride-hailing OD demand prediction.
文摘The effect of two nighttime ventilation strategies on cooling and heating energy use is investigated for a prototype office building in several northern America climates, using hourly building energy simulation software (DOE2.1E). The strategies include: scheduled-driven nighttime ventilation and a predictive method for nighttime ventilation. The maximum possible energy savings and peak demand reduction in each climate is analyzed as a function of ventilation rate, indoor-outdoor temperature difference, and building thermal mass. The results show that nighttime ventilation could save up to 32% cooling energy in an office building, while the total energy and peak demand savings for the fan and cooling is about 13% and 10%, respectively. Consequently, finding the optimal control parameters for the nighttime ventilation strategies is very important. The performance of the two strategies varies in different climates. The predictive nighttime ventilation worked better in weather conditions with fairly smooth transition from heating to cooling season.