The impact of sea surface waves on air-sea fluxes of heat and momentum over the Yellow Sea caused by cold fronts during cold air outbreak(CAO)events is investigated through numerical experiments with a FVCOM-SWAVE(Fin...The impact of sea surface waves on air-sea fluxes of heat and momentum over the Yellow Sea caused by cold fronts during cold air outbreak(CAO)events is investigated through numerical experiments with a FVCOM-SWAVE(Finite-Volume Coastal Ocean Model-Surface WAVE)wave-current coupled model.Two typical types of cold fronts,i.e.,those respectively from the north and from the west,are simulated and compared to each other and with monthly mean.During cold seasons,currents in the Yellow Sea are weaker than that during warm seasons.As a result,waves show a more prominent impact.The numerical simulations suggested that both the heat and momentum fluxes are significantly enhanced during CAO events;and they could be a few times larger than the monthly average of a five-year mean.The enhancement is highly sensitive to the features of CAOs.Specifically,it depends on the cold front orientation,intensity and evolution.One mechanism that strengthens the two fluxes is via sea waves.For the CAOs that are studied,an increase in sea wave height by 50%can double the maximal momentum flux,and cause an increase in heat flux by 10-160 W/m^2.展开更多
Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of t...Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.展开更多
We objectively define the onset date of the South China Sea (SCS) summer monsoon, after having evaluated previous studies and considered various factors. Then, interannual and interdecadal characteristics of the SCS s...We objectively define the onset date of the South China Sea (SCS) summer monsoon, after having evaluated previous studies and considered various factors. Then, interannual and interdecadal characteristics of the SCS summer monsoon onset are analyzed. In addition, we calculate air-sea heat fluxes over the Indian Ocean using the advanced method of CORARE3.0, based on satellite remote sensing data. The onset variation cycle has remarkable interdecadal variability with cycles of 16 a and 28 a. Correlation analysis between air-sea heat fluxes in the Indian Ocean and the SCS summer monsoon indicates that there is a remarkable lag correlation between them. This result has important implications for prediction of the SCS summer monsoon, and provides a scientific basis for further study of the onset process of this monsoon and its prediction. Based on these results, a linear regression equation is obtained to predict the onset date of the monsoon in 2011 and 2012. The forecast is that the onset date of 2011 will be normal or 1 pentad earlier than the normal year, while the onset date in 2012 will be 1-2 pentads later.展开更多
Based on oceanic and atmospheric parameters retrieved by satellite remote sensing using a neural network method, air-sea heat fluxes over the western Pacific warm pool area were calculated with the advanced the advanc...Based on oceanic and atmospheric parameters retrieved by satellite remote sensing using a neural network method, air-sea heat fluxes over the western Pacific warm pool area were calculated with the advanced the advanced Coupled Ocean-Atmosphere Response Experiment 3.0 (COARE3.0) bulk algorithm method. Then, the average annual and interannual characteristics of these fluxes were analyzed. The rela- tionship between the fluxes and the South China Sea (SCS) summer monsoon onset is highlighted. The results indicate that these fluxes have clear temporal and spatial characteristics. The sensible heat flux is at its maximum in the Kuroshio area, while the latent heat flux is at its maximum in the North Equatorial Current and Kuroshio area. The distribution of average annual air-sea heat fluxes shows that both sensible and latent heat fluxes are maximized in winter and minimized in summer. The air-sea heat fluxes have obvious interannual variations. Correlation analysis indicates a close lag-correlation between air-sea heat fluxes in the western Pacific warm pool area and at the SCS summer monsoon onset. The lagcorrelation can therefore predict the SCS summer monsoon onset, providing a reference for the study of precipitation related to the monsoon.展开更多
Sea spray,which comprises amounts of small ocean droplets,plays a significant role in the air-sea coupling,atmospheric and oceanic dynamics,and climate.However,it remains arduous to arrive at estimates for the efficie...Sea spray,which comprises amounts of small ocean droplets,plays a significant role in the air-sea coupling,atmospheric and oceanic dynamics,and climate.However,it remains arduous to arrive at estimates for the efficiency and accuracy of the sea spray induced air-sea heat and salt fluxes.This is because the microphysical process of sea spray evolution in the air is of extreme complexity.In this study,we iteratively calculated the sea spray induced air-sea heat and salt fluxes at various weather condition.To do so,we implemented one novel wave-steepness-dependent sea spray model into a bulk air-sea fluxes algorithm and utilized other sea spray models as comparisons.Based on the improved wave-dependent bulk turbulent algorithm,we observed that despite the negative contribution of sea spray to the sensible heat fluxes,the sea spray positively contributes to the air-sea latent heat fluxes,leading to an overall increase in the total air-sea heat fluxes.The additional heat fluxes caused by sea spray may be the missing critical process that can clarify the discrepancies observed between measured and modelled Tropical Cyclone’s development and intensification.In addition to heat fluxes,we observed that sea spray has significant impacts on the air-sea salt fluxes.As the sea salt particles are one of the main sources of the atmosphere aerosol,our results imply that sea spray could impact global and regional climate.Thus,given the significance of sea spray on the air-sea boundary layer,sea spray effects need to be considered in studies of air-sea interaction,dynamics of atmosphere and ocean.展开更多
Latent and sensible heat fluxes based on observations from a Black Pearl wave glider were estimated along the main stream of the Kuroshio Current from the East China Sea to the east coast of Japan,from December 2018 t...Latent and sensible heat fluxes based on observations from a Black Pearl wave glider were estimated along the main stream of the Kuroshio Current from the East China Sea to the east coast of Japan,from December 2018 to January 2019.It is found that the data obtained by the wave glider were comparable to the sea surface temperature data from the Operational Sea Surface Temperature and Sea Ice Analysis and the wind field data from WindSat.The Coupled Ocean Atmosphere Response Experiment 3.0(COARE 3.0)algorithm was used to calculate the change in air-sea turbulent heat flux along the Kuroshio.The averaged latent heat flux(LHF)and sensible heat flux(SHF)were 235 W/m^(2)and 134 W/m^(2),respectively,and the values in the Kuroshio were significant larger than those in the East China Sea.The LHF and SHF obtained from Objectively Analyzed Air-Sea Fluxes for the Global Oceans(OAFlux)were closer to those measured by the wave glider than those obtained from National Centers for Environmental Prediction(NCEP)reanalysis products.The maximum deviation occurred in the East China Sea and the recirculation zone of the Kuroshio(deviation of SHF>200 W/m^(2);deviation of LHF>400 W/m^(2)).This indicates that the NCEP and OAFlux products have large biases in areas with complex circulation.The wave glider has great potential to observe air-sea heat fluxes with a complex circulation structure.展开更多
This paper describes results of the fluxes of momentum , sensible heat and latent heat for the West Pacific Tropical Ocean Area ( 127 ° E - 150 ° E , 5 ° N -3 ° S ). The data were collected by the ...This paper describes results of the fluxes of momentum , sensible heat and latent heat for the West Pacific Tropical Ocean Area ( 127 ° E - 150 ° E , 5 ° N -3 ° S ). The data were collected by the small tethered balloon sounding system over this ocean area including 6 continuous stations (140 ° E. 0 ° ; 145 ° E, 0 ° ; 150 ° E, 0 ° ; 140° E, 5 ° N; 145 ° E, 5° N and 150 ° E, 5 ° N) from 11 October to 15 December, 1986 . These fluxes were calculated by the semiempirical flux-profile relationships of Monin-Obukhov similarity theory using these observed data. The results show that for this tropical ocean area the drag coefficient CD is equal to (1.53 ± 0.25) × 10 3 and the daily mean latent flux Hl is greater than its daily mean sensible flux HV by a factor of about 9.展开更多
In this paper the different results of estimated air-sea heat fluxes by different computational schemes of bulk formula are researched. The varying results may bring another source of the uncertainties of flux climato...In this paper the different results of estimated air-sea heat fluxes by different computational schemes of bulk formula are researched. The varying results may bring another source of the uncertainties of flux climatology. In addition to the classical scheme and the sampling scheme, a revised sampling scheme named semi-sampling scheme is proposed in this paper. In this revised version, the monthly means of (qs- qa)W and (Ts- Ta)W are calculated from each simultaneous measurement as that in the sampling method. But the transfer coefficients in this version are defined based on monthly means of W and instead of those in each measurement in order to use the files of monthly mean variables and in COADS (Woodruff et al. 1987).The results of a comparison study show that the covariance between (Ts - Ta )' and W' and that betWeen (qs- qa)' and W/ are less than 2 W / m2 and 5 W / m2 respectively in most areas, which are about one order of magnitude less than the standard deviation of the fluxes. Therefore the difference betWeen tWo schemes is not statishcally significant on average. However, in the regions off coast of Asian and North American continents, the contribuhon of covariance between (qs - qa )' and W' can be as large as 15 W / m2, which is about one third to a half of the standard deviation. Since there are files of monthly mean (qs - qa)W and (Ts- Ta)W for each year in the COADS. we propose to use these files directly in calculation of climatology. It is not necessary to use every individual report. The flux climatology calculated directly from the long-term mean values of basic meteorological elements shows an significant difference from that calculated from the mean of each year's flux, particularly for the latent heat flux which is on the order of 10 to 15 W / m2, about 3-4 times of the difference between semi-sampling and classical schemes and about one third of the standard deviation. Therefore it indicates that the time nit6rval of months is perhaps a better one in the calculation of flux climatology. It is not recommended to use the long--term means of the met6orological variables.展开更多
A singular value decomposition (SVD) analysis is carried out to reveal the relationship between the interannual variation of track and intensity of the western North Pacific tropical cyclones (WNPTCs) in the tropi...A singular value decomposition (SVD) analysis is carried out to reveal the relationship between the interannual variation of track and intensity of the western North Pacific tropical cyclones (WNPTCs) in the tropical cyclone (TC) active season (July–November) and the global net air-sea heat flux (Q net ) in the preceding season (April–June). For this purpose, a tropical cyclone track and intensity function (TIF) is defined by a combination of accumulated cyclone energy (ACE) index and a cyclone track density function. The SVD analysis reveals that the first mode is responsible for the positive correlation between the upward heat flux in the tropical central Pacific and the increased activity of western North Pacific (WNP) TIF, the second mode for the positive correlation between the upward heat flux in the North Indian Ocean and the northeastward track shift of WNPTCs and the third mode for the negative correlation between the upward heat flux in mid-latitude central Pacific and the northwest displacement of the WNP TC-active center. This suggests that Q net anomalies in some key regions have a substantial remote impact on the WNP TC activity.展开更多
With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and af...With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and after summer monsoon onset. It is discovered that, after summer monsoon onset, there are considerable changes in air-sea fluxes, especially in latent heat fluxes and net oceanic heat budget. Furthermore, the analyzed results of five synoptic stages are compared. And the characteristics of the flux transfer during different stages around onset of South China Sea monsoon are discussed. The flux change shows that there is an oceanic heat accumulating process during the pre-onset and the break period, as same as oceanic heat losing process during the onset period. Moreover, latent fluxes, the water vapor moving to the continent, even the rainfall appearance in Chinese Mainland also can be influenced by southwester. Comparing Xisha fluxes with those obtained from the Indian Ocean and the western Pacific Ocean, their differences may be observed. It is the reason why SSTs can keep stable over the South China Sea while they decrease quickly over the Arabian Sea and the Bay of Bengal after monsoon onset.展开更多
Indian Central Water (ICW) and Subantarctic Mode Water (SAMW) formation rates are estimated from two air-sea flux products, the Comprehensive Ocean-Atmosphere Data Set (COADS) and the Southampton Oceanography Ce...Indian Central Water (ICW) and Subantarctic Mode Water (SAMW) formation rates are estimated from two air-sea flux products, the Comprehensive Ocean-Atmosphere Data Set (COADS) and the Southampton Oceanography Centre (SOC) climatology. The ICW formation is estimated to be 8 Sv (1 Sv = 106m3·s-1 ) from both products, with more contributions from freshwater flux. From the COADS product, the SAMW formation rate is estimated to be 31 Sv in the potential density range of 26.5-26.9σθ, with also a significant contribution from freshwater flux. However, the SAMW formation rate estimated from the SOC product is much smaller, which may be due to bias of the SOC heat flux. Poorer quality of the flux products in the Southern Ocean may also contribute to the difference.展开更多
The full fluxes and associated air-sea variables based on three months of operational buoy observations in the East China Sea(ECS)in summer 2020 were analyzed for the first time.The surface net heat flux(Q_(net))was p...The full fluxes and associated air-sea variables based on three months of operational buoy observations in the East China Sea(ECS)in summer 2020 were analyzed for the first time.The surface net heat flux(Q_(net))was positive(139.7±77.7 W/m^(2))and was dominated by the combined eff ects of solar shortwave radiation(SW)and latent heat fluxes(LH).The mean heat flux components of 4 reanalysis datasets(NCEP2,MERRA-2,CFSR,and ERA5)and buoy data were compared to assess the mean ability of the modeling/reanalysis simulation.Among the four components of air-sea flux,SW was the best simulated,while LH was the worst simulated.The longwave radiation(LW)and LH values from reanalysis were higher than those from buoy data,especially LH.The high LH resulted in low Q_(net).Furthermore,the 4 reanalysis datasets were compared with the buoy dataset.Among all flux products,the difference in radiation flux was the smallest,while that in the turbulent flux was the greatest.The observed variables related to turbulent flux were analyzed to help determine the cause of the flux discrepancies.High wind speeds were the main cause of this difference.Using the variables provided by the reanalysis data and the same bulk formulas of the Coupled Ocean-Atmospheric Response Experiment(COARE 3.0),we found that the recalculated sensible heat flux(SH)and LH were closer to the observed heat fluxes than the direct model outputs.The signifi cant diff erences between these methods could account for the discrepancies among diff erent data.Among all air-sea flux products,the air-sea flux in ERA5 was closer to the in-situ observations than the other products.The comparison results of reanalysis data provide an important reference for more accurate studies of the summer heat flux in the ECS at the synoptic and climatic scales.展开更多
We investigate the air-sea momentum flux in the marine atmospheric boundary layer using a tower-based direct measurement method.First,we compare the collected data with previous observations,and the results are roughl...We investigate the air-sea momentum flux in the marine atmospheric boundary layer using a tower-based direct measurement method.First,we compare the collected data with previous observations,and the results are roughly consistent.Next,in the low-to-moderate winds,the exchange coefficients(or drag coefficients)deviate between onshore and offshore winds,which exhibits the influence of surface wave on the momentum flux.Furthermore,we use a surface-wave-involved parameterization scheme to explain the dependence of momentum flux on surface wave.The results consolidate the influence of surface wave on momentum flux on the one hand,and validate the surface-wave-involved parameterization scheme on the other hand.展开更多
The main objective of this work is to examine statistical causality relationships between low-frequency modes of climate variability and winter (December to February) anomaly of net heat flux at the Mediterranean ai...The main objective of this work is to examine statistical causality relationships between low-frequency modes of climate variability and winter (December to February) anomaly of net heat flux at the Mediterranean air-sea interface. The introduction of the concept of Granger causality allowed us to examine the influence of these climates indices on the net heat flux anomaly and to select Mediterranean surface regions that really influenced by each index. Results show that the winter anomaly of the net heat flux in the Algerian basin south and the gulf of Lion is mainly caused by the Arctic Oscillation. El Nifio-Southern Oscillation influences much more the Algerian basin north and the northern lonian Sea. The Quasi-Biennial Oscillation affects only the Alboran and the Tyrrhenian Seas. But the Adriatic and Levantine basin are impacted by any climate index. They also show that these climate indices can increase explained variance in winter variations of air-sea net heat flux by 10% to 15%, with a lag of three seasons. These relationships are less persistent and spatially limited.展开更多
The ESMD method can be seen as a new alternate of the well-known Hilbert-Huang transform (HHT) for non-steady data processing. It is good at finding the optimal adaptive global mean fitting curve, which is superior to...The ESMD method can be seen as a new alternate of the well-known Hilbert-Huang transform (HHT) for non-steady data processing. It is good at finding the optimal adaptive global mean fitting curve, which is superior to the common least-square method and running-mean approach. Take the air-sea momentum flux investigation as an example, only when the non-turbulent wind components is well extracted, can the remainder signal be seen as actual oscillations caused by turbulence. With the aid of —5/3 power law for the turbulence, a mode-filtering approach based on ESMD decomposition is developed here. The test on observational data indicates that this approach is very feasible and it may greatly reduce the error caused by the non-turbulent components.展开更多
Oceanic contribution to the poleward heat flux in the climate system includes two components: the sensible heat flux and the latent heat flux. Although the latent heat flux has been classified as atmospheric heat flux...Oceanic contribution to the poleward heat flux in the climate system includes two components: the sensible heat flux and the latent heat flux. Although the latent heat flux has been classified as atmospheric heat flux exclusively, it is argued that oceanic control over this component of poleward heat flux should play a critically important role. The so-called swamp ocean model practice is analyzed in detail, and the critical role of oceanic circulation in the establishment of the meridional moisture transport is emphasized.展开更多
The Nordic Seas have a significant impact on the climate system.Here 23-day air-sea heat fluxes were analyzed from an in situ air-sea coupled buoy deployed in the Lofoten Basin from 5 August 2012 to 27 August 2012.The...The Nordic Seas have a significant impact on the climate system.Here 23-day air-sea heat fluxes were analyzed from an in situ air-sea coupled buoy deployed in the Lofoten Basin from 5 August 2012 to 27 August 2012.The buoy captured two stages of strong south and north winds.The observations indicate that warm and wet air transported by the south wind can lead to decreased sensible and latent heat fluxes and net longwave radiation.The total oceanic heat loss was 50-60Wm−2.Thus,this stage was called the heat insulation process.By contrast,the heat dissipation process occurred with the north wind condition dur-ing advection of the cold and dry air.During this process,sensible and latent heat fluxes and net longwave radiation notably in-creased.The total oceanic heat loss during the heat dissipation process reached 240Wm−2,which was four-fold greater than that in the heat insulation process.Given that the heat insulation process is dominant in summertime,the ocean lost minimal heat but absorbed strong solar energy.Thus,a large quantity of energy was stored in the ocean.Heat was transported to the Arctic Ocean and accelerated Arctic warming.The heat dissipation process is dominant in autumn and winter when the ocean releases consid-erably more energy.The two processes revealed in this paper can be applied to warm-water areas in high latitudes.展开更多
Compared with observations,the simulated upper ocean heat content(OHC)determined from climate models shows an underestimation bias.The simulation bias of the average annual water temperature in the upper 300 m is 0.2...Compared with observations,the simulated upper ocean heat content(OHC)determined from climate models shows an underestimation bias.The simulation bias of the average annual water temperature in the upper 300 m is 0.2℃lower than the observational results.The results from our two numerical experiments,using a CMIP5 model,show that the non-breaking surface wave-induced vertical mixing can reduce this bias.The enhanced vertical mixing increases the OHC in the global upper ocean(65°S–65°N).Using non-breaking surface wave-induced vertical mixing reduced the disparity by 30%to 0.14℃.The heat content increase is not directly induced by air-sea heat fluxes during the simulation period,but is the legacy of temperature increases in the first 150 years.During this period,additional vertical mixing was initially included in the climate model.The non-breaking surface wave-induced vertical mixing improves the OHC by increasing the air-sea heat fluxes in the first 150 years.This increase in air-sea heat fluxes warms the upper ocean by 0.05–0.06℃.The results show that the incorporation of vertical mixing induced by nonbreaking surface waves in our experiments can improve the simulation of OHC in the global upper ocean.展开更多
In considering the vertical heat boundary approximation for the free surface applied. However, due to the existence of the transport problems in the upper ocean, the flat upper and the horizontal homogenous hypothesis...In considering the vertical heat boundary approximation for the free surface applied. However, due to the existence of the transport problems in the upper ocean, the flat upper and the horizontal homogenous hypothesis are usually wave motion, the application of this approximation may result in some errors to the solar irradiation since it decays quickly in respect to the actual thickness of the water layer below the surface; on the other hand, due to the fluctuation of the water layer depth, it is improper to neglect the effects of the horizontal advection and turbulent diffusion since they also contribute to the vertical heat transport. A new model is constructed in this study to reflect these effects. The corresponding numerical simulations show that the wave motion may remarkably accelerate the vertical heat transferring process and the variation of the temperature in the wave affected layer appears in an oscillating manner.展开更多
The Indian Ocean Dipole(IOD) is an important natural mode of the tropical Indian Ocean(TIO). Sea surface temperature anomaly(SSTA) variations in the TIO are an essential focus of the study of the IOD. Monthly variatio...The Indian Ocean Dipole(IOD) is an important natural mode of the tropical Indian Ocean(TIO). Sea surface temperature anomaly(SSTA) variations in the TIO are an essential focus of the study of the IOD. Monthly variations of air-sea heat flux, rate of change of heat content and oceanic thermal advection in positive/negative IOD events(pIODs/nIODs) occurring after El Nino/La Nina were investigated, using long-series authoritative data, including sea surface wind, sea surface flux, ocean current, etc. It was found that the zonal wind anomaly induced by the initial SSTA gradient is the main trigger of IODs occurring after ENSOs. In pIODs, SSTA evolution in the TIO is primarily determined by the local surface heat flux anomaly, while in nIODs, it is controlled by anomalous oceanic thermal advection. The anomalous southwestern anticyclonic circulation in pIODs enhances regional differences in evaporative capacity and latent heat, and in nIODs, it augments the east-west difference in the advective thermal budget. Further, the meridional anomaly mechanism is also non-negligible during the development of nIODs. As the SWA moves eastward, the meridional SWA prevails near 60°E and the corresponding meridional anomalous current appears. The corresponding maximum meridional thermal advection anomaly reaches 200 Wm^-2 in September.展开更多
基金supported by the National Natural Science Foundation of China (Grant Numbers. 41276033)the Jiangsu Science and Technology Support Project (Grant Number. BE2014729)+1 种基金the support from Jiangsu Provincial Government through Jiangsu Chair Professorshipthe 2015 Jiangsu Program of Entrepreneurship and Innovation Group
文摘The impact of sea surface waves on air-sea fluxes of heat and momentum over the Yellow Sea caused by cold fronts during cold air outbreak(CAO)events is investigated through numerical experiments with a FVCOM-SWAVE(Finite-Volume Coastal Ocean Model-Surface WAVE)wave-current coupled model.Two typical types of cold fronts,i.e.,those respectively from the north and from the west,are simulated and compared to each other and with monthly mean.During cold seasons,currents in the Yellow Sea are weaker than that during warm seasons.As a result,waves show a more prominent impact.The numerical simulations suggested that both the heat and momentum fluxes are significantly enhanced during CAO events;and they could be a few times larger than the monthly average of a five-year mean.The enhancement is highly sensitive to the features of CAOs.Specifically,it depends on the cold front orientation,intensity and evolution.One mechanism that strengthens the two fluxes is via sea waves.For the CAOs that are studied,an increase in sea wave height by 50%can double the maximal momentum flux,and cause an increase in heat flux by 10-160 W/m^2.
基金Supported by the National Natural Science Foundation of China(Nos.42122040,42076016)。
文摘Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)
文摘We objectively define the onset date of the South China Sea (SCS) summer monsoon, after having evaluated previous studies and considered various factors. Then, interannual and interdecadal characteristics of the SCS summer monsoon onset are analyzed. In addition, we calculate air-sea heat fluxes over the Indian Ocean using the advanced method of CORARE3.0, based on satellite remote sensing data. The onset variation cycle has remarkable interdecadal variability with cycles of 16 a and 28 a. Correlation analysis between air-sea heat fluxes in the Indian Ocean and the SCS summer monsoon indicates that there is a remarkable lag correlation between them. This result has important implications for prediction of the SCS summer monsoon, and provides a scientific basis for further study of the onset process of this monsoon and its prediction. Based on these results, a linear regression equation is obtained to predict the onset date of the monsoon in 2011 and 2012. The forecast is that the onset date of 2011 will be normal or 1 pentad earlier than the normal year, while the onset date in 2012 will be 1-2 pentads later.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Science(KZCX2-YW-Q11-02)the National Basic Research Program of China (2012CB417402)
文摘Based on oceanic and atmospheric parameters retrieved by satellite remote sensing using a neural network method, air-sea heat fluxes over the western Pacific warm pool area were calculated with the advanced the advanced Coupled Ocean-Atmosphere Response Experiment 3.0 (COARE3.0) bulk algorithm method. Then, the average annual and interannual characteristics of these fluxes were analyzed. The rela- tionship between the fluxes and the South China Sea (SCS) summer monsoon onset is highlighted. The results indicate that these fluxes have clear temporal and spatial characteristics. The sensible heat flux is at its maximum in the Kuroshio area, while the latent heat flux is at its maximum in the North Equatorial Current and Kuroshio area. The distribution of average annual air-sea heat fluxes shows that both sensible and latent heat fluxes are maximized in winter and minimized in summer. The air-sea heat fluxes have obvious interannual variations. Correlation analysis indicates a close lag-correlation between air-sea heat fluxes in the western Pacific warm pool area and at the SCS summer monsoon onset. The lagcorrelation can therefore predict the SCS summer monsoon onset, providing a reference for the study of precipitation related to the monsoon.
基金The support of the US Office of Naval Research Global under contract No.N62909-20-1-2080.
文摘Sea spray,which comprises amounts of small ocean droplets,plays a significant role in the air-sea coupling,atmospheric and oceanic dynamics,and climate.However,it remains arduous to arrive at estimates for the efficiency and accuracy of the sea spray induced air-sea heat and salt fluxes.This is because the microphysical process of sea spray evolution in the air is of extreme complexity.In this study,we iteratively calculated the sea spray induced air-sea heat and salt fluxes at various weather condition.To do so,we implemented one novel wave-steepness-dependent sea spray model into a bulk air-sea fluxes algorithm and utilized other sea spray models as comparisons.Based on the improved wave-dependent bulk turbulent algorithm,we observed that despite the negative contribution of sea spray to the sensible heat fluxes,the sea spray positively contributes to the air-sea latent heat fluxes,leading to an overall increase in the total air-sea heat fluxes.The additional heat fluxes caused by sea spray may be the missing critical process that can clarify the discrepancies observed between measured and modelled Tropical Cyclone’s development and intensification.In addition to heat fluxes,we observed that sea spray has significant impacts on the air-sea salt fluxes.As the sea salt particles are one of the main sources of the atmosphere aerosol,our results imply that sea spray could impact global and regional climate.Thus,given the significance of sea spray on the air-sea boundary layer,sea spray effects need to be considered in studies of air-sea interaction,dynamics of atmosphere and ocean.
基金The National Key R&D Program of China under contract Nos 2017YFC0305904,2017YFC0305902 and 2017YFC0305804the National Natural Science Foundation of China under contract No.44006020+3 种基金the Guangdong Science and Technology Project under contract No.2019A1515111044the Shandong Provincial Key Research and Development Program(Major Scientific and Technological Innovation Project)under contract No.2019JZZY020701the Wenhai Program of Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2017WHZZB0101the CAS Key Technology Talent Program under contract No.202012292205。
文摘Latent and sensible heat fluxes based on observations from a Black Pearl wave glider were estimated along the main stream of the Kuroshio Current from the East China Sea to the east coast of Japan,from December 2018 to January 2019.It is found that the data obtained by the wave glider were comparable to the sea surface temperature data from the Operational Sea Surface Temperature and Sea Ice Analysis and the wind field data from WindSat.The Coupled Ocean Atmosphere Response Experiment 3.0(COARE 3.0)algorithm was used to calculate the change in air-sea turbulent heat flux along the Kuroshio.The averaged latent heat flux(LHF)and sensible heat flux(SHF)were 235 W/m^(2)and 134 W/m^(2),respectively,and the values in the Kuroshio were significant larger than those in the East China Sea.The LHF and SHF obtained from Objectively Analyzed Air-Sea Fluxes for the Global Oceans(OAFlux)were closer to those measured by the wave glider than those obtained from National Centers for Environmental Prediction(NCEP)reanalysis products.The maximum deviation occurred in the East China Sea and the recirculation zone of the Kuroshio(deviation of SHF>200 W/m^(2);deviation of LHF>400 W/m^(2)).This indicates that the NCEP and OAFlux products have large biases in areas with complex circulation.The wave glider has great potential to observe air-sea heat fluxes with a complex circulation structure.
文摘This paper describes results of the fluxes of momentum , sensible heat and latent heat for the West Pacific Tropical Ocean Area ( 127 ° E - 150 ° E , 5 ° N -3 ° S ). The data were collected by the small tethered balloon sounding system over this ocean area including 6 continuous stations (140 ° E. 0 ° ; 145 ° E, 0 ° ; 150 ° E, 0 ° ; 140° E, 5 ° N; 145 ° E, 5° N and 150 ° E, 5 ° N) from 11 October to 15 December, 1986 . These fluxes were calculated by the semiempirical flux-profile relationships of Monin-Obukhov similarity theory using these observed data. The results show that for this tropical ocean area the drag coefficient CD is equal to (1.53 ± 0.25) × 10 3 and the daily mean latent flux Hl is greater than its daily mean sensible flux HV by a factor of about 9.
文摘In this paper the different results of estimated air-sea heat fluxes by different computational schemes of bulk formula are researched. The varying results may bring another source of the uncertainties of flux climatology. In addition to the classical scheme and the sampling scheme, a revised sampling scheme named semi-sampling scheme is proposed in this paper. In this revised version, the monthly means of (qs- qa)W and (Ts- Ta)W are calculated from each simultaneous measurement as that in the sampling method. But the transfer coefficients in this version are defined based on monthly means of W and instead of those in each measurement in order to use the files of monthly mean variables and in COADS (Woodruff et al. 1987).The results of a comparison study show that the covariance between (Ts - Ta )' and W' and that betWeen (qs- qa)' and W/ are less than 2 W / m2 and 5 W / m2 respectively in most areas, which are about one order of magnitude less than the standard deviation of the fluxes. Therefore the difference betWeen tWo schemes is not statishcally significant on average. However, in the regions off coast of Asian and North American continents, the contribuhon of covariance between (qs - qa )' and W' can be as large as 15 W / m2, which is about one third to a half of the standard deviation. Since there are files of monthly mean (qs - qa)W and (Ts- Ta)W for each year in the COADS. we propose to use these files directly in calculation of climatology. It is not necessary to use every individual report. The flux climatology calculated directly from the long-term mean values of basic meteorological elements shows an significant difference from that calculated from the mean of each year's flux, particularly for the latent heat flux which is on the order of 10 to 15 W / m2, about 3-4 times of the difference between semi-sampling and classical schemes and about one third of the standard deviation. Therefore it indicates that the time nit6rval of months is perhaps a better one in the calculation of flux climatology. It is not recommended to use the long--term means of the met6orological variables.
基金The National Key Basic Research Program of China under Grant No.2009CB421404the National Natural Science Foundation of China-Regional Cooperation Project under Grant No.40921160379+1 种基金the National Natural Science foundation of China under Grant No.40730951the Fundamental Research Funds for the Central Universities under Grant No.11lgjc10
文摘A singular value decomposition (SVD) analysis is carried out to reveal the relationship between the interannual variation of track and intensity of the western North Pacific tropical cyclones (WNPTCs) in the tropical cyclone (TC) active season (July–November) and the global net air-sea heat flux (Q net ) in the preceding season (April–June). For this purpose, a tropical cyclone track and intensity function (TIF) is defined by a combination of accumulated cyclone energy (ACE) index and a cyclone track density function. The SVD analysis reveals that the first mode is responsible for the positive correlation between the upward heat flux in the tropical central Pacific and the increased activity of western North Pacific (WNP) TIF, the second mode for the positive correlation between the upward heat flux in the North Indian Ocean and the northeastward track shift of WNPTCs and the third mode for the negative correlation between the upward heat flux in mid-latitude central Pacific and the northwest displacement of the WNP TC-active center. This suggests that Q net anomalies in some key regions have a substantial remote impact on the WNP TC activity.
基金National Natural Science Foundation of China under contract No. 40075003The Prior Study of State Key Project for Basic Research "East Asian Monsoon Experiment".
文摘With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and after summer monsoon onset. It is discovered that, after summer monsoon onset, there are considerable changes in air-sea fluxes, especially in latent heat fluxes and net oceanic heat budget. Furthermore, the analyzed results of five synoptic stages are compared. And the characteristics of the flux transfer during different stages around onset of South China Sea monsoon are discussed. The flux change shows that there is an oceanic heat accumulating process during the pre-onset and the break period, as same as oceanic heat losing process during the onset period. Moreover, latent fluxes, the water vapor moving to the continent, even the rainfall appearance in Chinese Mainland also can be influenced by southwester. Comparing Xisha fluxes with those obtained from the Indian Ocean and the western Pacific Ocean, their differences may be observed. It is the reason why SSTs can keep stable over the South China Sea while they decrease quickly over the Arabian Sea and the Bay of Bengal after monsoon onset.
文摘Indian Central Water (ICW) and Subantarctic Mode Water (SAMW) formation rates are estimated from two air-sea flux products, the Comprehensive Ocean-Atmosphere Data Set (COADS) and the Southampton Oceanography Centre (SOC) climatology. The ICW formation is estimated to be 8 Sv (1 Sv = 106m3·s-1 ) from both products, with more contributions from freshwater flux. From the COADS product, the SAMW formation rate is estimated to be 31 Sv in the potential density range of 26.5-26.9σθ, with also a significant contribution from freshwater flux. However, the SAMW formation rate estimated from the SOC product is much smaller, which may be due to bias of the SOC heat flux. Poorer quality of the flux products in the Southern Ocean may also contribute to the difference.
基金Supported by the National Natural Science Foundation of China(Nos.42076016,41876224)。
文摘The full fluxes and associated air-sea variables based on three months of operational buoy observations in the East China Sea(ECS)in summer 2020 were analyzed for the first time.The surface net heat flux(Q_(net))was positive(139.7±77.7 W/m^(2))and was dominated by the combined eff ects of solar shortwave radiation(SW)and latent heat fluxes(LH).The mean heat flux components of 4 reanalysis datasets(NCEP2,MERRA-2,CFSR,and ERA5)and buoy data were compared to assess the mean ability of the modeling/reanalysis simulation.Among the four components of air-sea flux,SW was the best simulated,while LH was the worst simulated.The longwave radiation(LW)and LH values from reanalysis were higher than those from buoy data,especially LH.The high LH resulted in low Q_(net).Furthermore,the 4 reanalysis datasets were compared with the buoy dataset.Among all flux products,the difference in radiation flux was the smallest,while that in the turbulent flux was the greatest.The observed variables related to turbulent flux were analyzed to help determine the cause of the flux discrepancies.High wind speeds were the main cause of this difference.Using the variables provided by the reanalysis data and the same bulk formulas of the Coupled Ocean-Atmospheric Response Experiment(COARE 3.0),we found that the recalculated sensible heat flux(SH)and LH were closer to the observed heat fluxes than the direct model outputs.The signifi cant diff erences between these methods could account for the discrepancies among diff erent data.Among all air-sea flux products,the air-sea flux in ERA5 was closer to the in-situ observations than the other products.The comparison results of reanalysis data provide an important reference for more accurate studies of the summer heat flux in the ECS at the synoptic and climatic scales.
基金The National Natural Science Foundation of China under contract Nos 41830533,41806028 and 41876003the National Key Research and Development Program of China under contract Nos 2017YFA0604102 and 2016YFC1401404。
文摘We investigate the air-sea momentum flux in the marine atmospheric boundary layer using a tower-based direct measurement method.First,we compare the collected data with previous observations,and the results are roughly consistent.Next,in the low-to-moderate winds,the exchange coefficients(or drag coefficients)deviate between onshore and offshore winds,which exhibits the influence of surface wave on the momentum flux.Furthermore,we use a surface-wave-involved parameterization scheme to explain the dependence of momentum flux on surface wave.The results consolidate the influence of surface wave on momentum flux on the one hand,and validate the surface-wave-involved parameterization scheme on the other hand.
文摘The main objective of this work is to examine statistical causality relationships between low-frequency modes of climate variability and winter (December to February) anomaly of net heat flux at the Mediterranean air-sea interface. The introduction of the concept of Granger causality allowed us to examine the influence of these climates indices on the net heat flux anomaly and to select Mediterranean surface regions that really influenced by each index. Results show that the winter anomaly of the net heat flux in the Algerian basin south and the gulf of Lion is mainly caused by the Arctic Oscillation. El Nifio-Southern Oscillation influences much more the Algerian basin north and the northern lonian Sea. The Quasi-Biennial Oscillation affects only the Alboran and the Tyrrhenian Seas. But the Adriatic and Levantine basin are impacted by any climate index. They also show that these climate indices can increase explained variance in winter variations of air-sea net heat flux by 10% to 15%, with a lag of three seasons. These relationships are less persistent and spatially limited.
文摘The ESMD method can be seen as a new alternate of the well-known Hilbert-Huang transform (HHT) for non-steady data processing. It is good at finding the optimal adaptive global mean fitting curve, which is superior to the common least-square method and running-mean approach. Take the air-sea momentum flux investigation as an example, only when the non-turbulent wind components is well extracted, can the remainder signal be seen as actual oscillations caused by turbulence. With the aid of —5/3 power law for the turbulence, a mode-filtering approach based on ESMD decomposition is developed here. The test on observational data indicates that this approach is very feasible and it may greatly reduce the error caused by the non-turbulent components.
文摘Oceanic contribution to the poleward heat flux in the climate system includes two components: the sensible heat flux and the latent heat flux. Although the latent heat flux has been classified as atmospheric heat flux exclusively, it is argued that oceanic control over this component of poleward heat flux should play a critically important role. The so-called swamp ocean model practice is analyzed in detail, and the critical role of oceanic circulation in the establishment of the meridional moisture transport is emphasized.
基金the National Natural Sci ence Foundation of China(No.41976022)the National Major Scientific Research Program for Global Change Re-search(No.2015CB953900)the Major Scientific and Technological Innovation Projects of Shandong Province(No.2018SDKJ0104-1).
文摘The Nordic Seas have a significant impact on the climate system.Here 23-day air-sea heat fluxes were analyzed from an in situ air-sea coupled buoy deployed in the Lofoten Basin from 5 August 2012 to 27 August 2012.The buoy captured two stages of strong south and north winds.The observations indicate that warm and wet air transported by the south wind can lead to decreased sensible and latent heat fluxes and net longwave radiation.The total oceanic heat loss was 50-60Wm−2.Thus,this stage was called the heat insulation process.By contrast,the heat dissipation process occurred with the north wind condition dur-ing advection of the cold and dry air.During this process,sensible and latent heat fluxes and net longwave radiation notably in-creased.The total oceanic heat loss during the heat dissipation process reached 240Wm−2,which was four-fold greater than that in the heat insulation process.Given that the heat insulation process is dominant in summertime,the ocean lost minimal heat but absorbed strong solar energy.Thus,a large quantity of energy was stored in the ocean.Heat was transported to the Arctic Ocean and accelerated Arctic warming.The heat dissipation process is dominant in autumn and winter when the ocean releases consid-erably more energy.The two processes revealed in this paper can be applied to warm-water areas in high latitudes.
基金Supported by the International Cooperation Project on the China-Australia Research Centre for Maritime Engineering of Ministry of Science and Technology,China(No.2016YFE0101400)the Basic Scientific Fund for National Public Research Institutes of China(No.2018S03)+4 种基金the National Natural Science Foundation of China(Nos.41821004,41776038)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1606405)the International Cooperation Project of Indo-Pacific Ocean Environment Variation and Air-Sea Interaction(No.GASI-IPOVAI-05)the IOC/WESTPAC OFS Project,the Ao Shan Talents Cultivation Excellent Scholar Program Supported by Qingdao National Laboratory for Marine Science and Technology(No.2017ASTCP-ES04)the China-Korea Cooperation Project on the Prediction of North-West Pacific Climate Change
文摘Compared with observations,the simulated upper ocean heat content(OHC)determined from climate models shows an underestimation bias.The simulation bias of the average annual water temperature in the upper 300 m is 0.2℃lower than the observational results.The results from our two numerical experiments,using a CMIP5 model,show that the non-breaking surface wave-induced vertical mixing can reduce this bias.The enhanced vertical mixing increases the OHC in the global upper ocean(65°S–65°N).Using non-breaking surface wave-induced vertical mixing reduced the disparity by 30%to 0.14℃.The heat content increase is not directly induced by air-sea heat fluxes during the simulation period,but is the legacy of temperature increases in the first 150 years.During this period,additional vertical mixing was initially included in the climate model.The non-breaking surface wave-induced vertical mixing improves the OHC by increasing the air-sea heat fluxes in the first 150 years.This increase in air-sea heat fluxes warms the upper ocean by 0.05–0.06℃.The results show that the incorporation of vertical mixing induced by nonbreaking surface waves in our experiments can improve the simulation of OHC in the global upper ocean.
基金Supported by the National High Technology Research and Development Program of China (863 Program, No. 2006AA09A309)China Postdoctoral Science Foundation (No. 20070411111)the Fund of Shandong Province for the Excellent Post-Doctors (No. 200603056)
文摘In considering the vertical heat boundary approximation for the free surface applied. However, due to the existence of the transport problems in the upper ocean, the flat upper and the horizontal homogenous hypothesis are usually wave motion, the application of this approximation may result in some errors to the solar irradiation since it decays quickly in respect to the actual thickness of the water layer below the surface; on the other hand, due to the fluctuation of the water layer depth, it is improper to neglect the effects of the horizontal advection and turbulent diffusion since they also contribute to the vertical heat transport. A new model is constructed in this study to reflect these effects. The corresponding numerical simulations show that the wave motion may remarkably accelerate the vertical heat transferring process and the variation of the temperature in the wave affected layer appears in an oscillating manner.
基金supported by the National Key Research and Development Program of China (No.2016YFC1402 000)the National Natural Science Foundation of China (Nos.51509226, 51779236)。
文摘The Indian Ocean Dipole(IOD) is an important natural mode of the tropical Indian Ocean(TIO). Sea surface temperature anomaly(SSTA) variations in the TIO are an essential focus of the study of the IOD. Monthly variations of air-sea heat flux, rate of change of heat content and oceanic thermal advection in positive/negative IOD events(pIODs/nIODs) occurring after El Nino/La Nina were investigated, using long-series authoritative data, including sea surface wind, sea surface flux, ocean current, etc. It was found that the zonal wind anomaly induced by the initial SSTA gradient is the main trigger of IODs occurring after ENSOs. In pIODs, SSTA evolution in the TIO is primarily determined by the local surface heat flux anomaly, while in nIODs, it is controlled by anomalous oceanic thermal advection. The anomalous southwestern anticyclonic circulation in pIODs enhances regional differences in evaporative capacity and latent heat, and in nIODs, it augments the east-west difference in the advective thermal budget. Further, the meridional anomaly mechanism is also non-negligible during the development of nIODs. As the SWA moves eastward, the meridional SWA prevails near 60°E and the corresponding meridional anomalous current appears. The corresponding maximum meridional thermal advection anomaly reaches 200 Wm^-2 in September.