The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analy...The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analyzed.The test shows that making full use of the evaporative cooling "free cooling" in Spring and Autumn seasons can fully meet the requirements of air-conditioned comfort through the switch of the function in different seasons.Taking into account the evaporative cooling fan and pump energy consumption,compared with the traditional mechanical refrigeration system,more than 80 percent of energy can be saved,and the energy efficiency ratio of the Unit(EER)is as high as 7.63.Using the two stages of indirect evaporative cooling to pre-cool the new wind in summer,under the conditions of the same air supply temperature requirements,0.83 kg/s chilled water saved can be equivalent to the traditional mechanical refrigeration system,and when the new wind ratio up to 50 percent,more than 10 percent load was reduced in mechanical refrigeration system.The overall EER increased about 35 percent.展开更多
High temperature heat hazard at mineral mine becomes more and more serious as the increase of mining depth.Heat sources at working faces of mineral mines are complex and are of different characteristics,presenting new...High temperature heat hazard at mineral mine becomes more and more serious as the increase of mining depth.Heat sources at working faces of mineral mines are complex and are of different characteristics,presenting new challenges for air conditioning systems.In this paper,heat sources at four types of working faces are summarized and their characteristics are investigated.Based on this,simplified equations,which are linear with length of working faces,are proposed to calculate heat dissipation rates.So that the main heat sources of different working faces can be found,and cooling load of air conditioning systems can be calculated.Then,considering main heat sources of coal mines,a typical working face is designed to investigate performances of different ventilation systems and air conditioning systems.Simulation results show that segmented ventilation systems(SC)and heat shield assisted centralized ventilation systems(CCHS)can realize much better temperature distributions at working faces.However,cooling load can be greatly reduced for CCHS,when untreated air is supplied to the coal seam side.Based on this,free cooling assisted air conditioning systems are designed,and annual average energy efficiency ratio(EERann)of the systems are investigated and compared between direct evaporate cooling and indirect evaporate cooling(IEC).For SC,as compared with scenarios without free-cooling,IEC can increase EERann by 15%-23%and 22%-32%under Benxi and Datong ambient conditions,respectively.Besides,to ensure high EERann,CCHS is preferred and it is essential to increase thermal insulation of air ducts.展开更多
When a historic façade needs to be preserved or when the seismic considerations favor use of a concrete wall system and fire considerations limit exterior thermal insulation,one needs to use interior thermal insu...When a historic façade needs to be preserved or when the seismic considerations favor use of a concrete wall system and fire considerations limit exterior thermal insulation,one needs to use interior thermal insulation systems.Interior thermal insulation systems are less effective than the exterior systems and will not reduce the effect of thermal bridges.Yet they may be successfully used and,in many instances,are recommended as a complement to the exterior insulation.This paper presents one of these cases.It is focused on the most successful applications of capillary active,dynamic interior thermal insulation.This happens when such insulation is integrated with heating,cooling and ventilation,air conditioning(HVAC)system.Starting with a pioneering work of the Technical University in Dresden in development of capillary active interior insulations,we propose a next generation,namely,a bio-fiber thermal insulation.When completing the review,this paper proposes a concept of a joint research project to be undertaken by partners from the US(where improvement of indoor climate in exposed coastal areas is needed),China(indoor climate in non-air conditioned concrete buildings is an issue),and Germany(where the bio-fiber technology has been developed).展开更多
基金Xi'an Polytechnic University Graduate Innovational Foundation(chx080608)
文摘The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analyzed.The test shows that making full use of the evaporative cooling "free cooling" in Spring and Autumn seasons can fully meet the requirements of air-conditioned comfort through the switch of the function in different seasons.Taking into account the evaporative cooling fan and pump energy consumption,compared with the traditional mechanical refrigeration system,more than 80 percent of energy can be saved,and the energy efficiency ratio of the Unit(EER)is as high as 7.63.Using the two stages of indirect evaporative cooling to pre-cool the new wind in summer,under the conditions of the same air supply temperature requirements,0.83 kg/s chilled water saved can be equivalent to the traditional mechanical refrigeration system,and when the new wind ratio up to 50 percent,more than 10 percent load was reduced in mechanical refrigeration system.The overall EER increased about 35 percent.
基金The authors appreciate the support from the National Natural Science Foundation of China(No.51706015)from the Fundamental Research Funds for the Central Universities(FRF-IDRY-19-01).
文摘High temperature heat hazard at mineral mine becomes more and more serious as the increase of mining depth.Heat sources at working faces of mineral mines are complex and are of different characteristics,presenting new challenges for air conditioning systems.In this paper,heat sources at four types of working faces are summarized and their characteristics are investigated.Based on this,simplified equations,which are linear with length of working faces,are proposed to calculate heat dissipation rates.So that the main heat sources of different working faces can be found,and cooling load of air conditioning systems can be calculated.Then,considering main heat sources of coal mines,a typical working face is designed to investigate performances of different ventilation systems and air conditioning systems.Simulation results show that segmented ventilation systems(SC)and heat shield assisted centralized ventilation systems(CCHS)can realize much better temperature distributions at working faces.However,cooling load can be greatly reduced for CCHS,when untreated air is supplied to the coal seam side.Based on this,free cooling assisted air conditioning systems are designed,and annual average energy efficiency ratio(EERann)of the systems are investigated and compared between direct evaporate cooling and indirect evaporate cooling(IEC).For SC,as compared with scenarios without free-cooling,IEC can increase EERann by 15%-23%and 22%-32%under Benxi and Datong ambient conditions,respectively.Besides,to ensure high EERann,CCHS is preferred and it is essential to increase thermal insulation of air ducts.
文摘When a historic façade needs to be preserved or when the seismic considerations favor use of a concrete wall system and fire considerations limit exterior thermal insulation,one needs to use interior thermal insulation systems.Interior thermal insulation systems are less effective than the exterior systems and will not reduce the effect of thermal bridges.Yet they may be successfully used and,in many instances,are recommended as a complement to the exterior insulation.This paper presents one of these cases.It is focused on the most successful applications of capillary active,dynamic interior thermal insulation.This happens when such insulation is integrated with heating,cooling and ventilation,air conditioning(HVAC)system.Starting with a pioneering work of the Technical University in Dresden in development of capillary active interior insulations,we propose a next generation,namely,a bio-fiber thermal insulation.When completing the review,this paper proposes a concept of a joint research project to be undertaken by partners from the US(where improvement of indoor climate in exposed coastal areas is needed),China(indoor climate in non-air conditioned concrete buildings is an issue),and Germany(where the bio-fiber technology has been developed).