目的:对采用水刀与传统小切口修剪术两种术式治疗腋臭的疗效进行系统评价。方法:应用计算机检索知网、万方、维普、CBM、PubMed、Embase、Web Of Science等数据库,收集国内外有关水刀及传统小切口皮下修剪治疗腋臭的随机对照试验研究、...目的:对采用水刀与传统小切口修剪术两种术式治疗腋臭的疗效进行系统评价。方法:应用计算机检索知网、万方、维普、CBM、PubMed、Embase、Web Of Science等数据库,收集国内外有关水刀及传统小切口皮下修剪治疗腋臭的随机对照试验研究、临床对照研究。对纳入的文献进行质量评价并进行资料提取后,采用RevMan 5.4软件进行Meta分析。结果:最终共纳入7篇文献,其中中文5篇,英文2篇,共纳入662例患者,1324侧腋窝,其中水刀组340例(680侧腋窝),传统手术组322例(644侧腋窝)。Meta分析结果显示,水刀相对于传统手术治疗腋臭在术后早期并发症发生率(RR=0.28)、术后瘢痕发生率(RR=0.26)、术后满意度(非常满意,RR=1.43)上更有优势(P<0.05);水刀相对于传统手术治疗腋臭在治愈率(OR=1.36)上差异无统计学意义(P>0.05)。结论:水刀与传统手术治疗腋臭比较,在术后早期并发症发生率、术后瘢痕发生率、术后满意度(非常满意)上更有优势;在治愈率上两者差异无统计学意义。由于纳入的文献缺少RCT研究,且样本量偏少,需进一步开展更高质量的RCT加以验证。展开更多
The turbulence structures near a sheared air-water interface were experimentally investigated with the hydrogen bubble visualization technique. Surface shear was imposed by an airflow over the water flow which was kep...The turbulence structures near a sheared air-water interface were experimentally investigated with the hydrogen bubble visualization technique. Surface shear was imposed by an airflow over the water flow which was kept free from surface waves. Results show that the wind shear has the main influence on coherent structures under air-water interfaces. Low- and high- speed streaks form in the region close to the interface as a result of the imposed shear stress. When a certain airflow velocity is reached, “turbulent spots” appear randomly at low-speed streaks with some characteristics of hairpin vortices. At even higher shear rates, the flow near the interface is dominated primarily by intermittent bursting events. The coherent structures observed near sheared air-water interfaces show qualitative similarities with those occurring in near-wall turbulence. However, a few distinctive phenomena were also observed, including the fluctuating thickness of the instantaneous boundary layer and vertical vortices in bursting processes, which appear to be associated with the characteristics of air-water interfaces.展开更多
During the last three decades, the introduction of new construction materials (e.g. RCC (Roller Compacted Concrete), strengthened gabions) has increased the interest for stepped channels and spillways. However stepped...During the last three decades, the introduction of new construction materials (e.g. RCC (Roller Compacted Concrete), strengthened gabions) has increased the interest for stepped channels and spillways. However stepped chute hydraulics is not simple, because of different flow regimes and importantly because of very-strong interactions between entrained air and turbu- lence. In this study, new air-water flow measurements were conducted in two large-size stepped chute facilities with two step heights in each facility to study experimental distortion caused by scale effects and the soundness of result extrapolation to pro- totypes. Experimental data included distributions of air concentration, air-water flow velocity, bubble frequency, bubble chord length and air-water flow turbulence intensity. For a Froude similitude, the results implied that scale effects were observed in both facilities, although the geometric scaling ratio was only Lr=2 in each case. The selection of the criterion for scale effects is a critical issue. For example, major differences (i.e. scale effects) were observed in terms of bubble chord sizes and turbulence levels al- though little scale effects were seen in terms of void fraction and velocity distributions. Overall the findings emphasize that physical modelling of stepped chutes based upon a Froude similitude is more sensitive to scale effects than classical smooth-invert chute studies, and this is consistent with basic dimensional analysis developed herein.展开更多
The characteristics of low-speed fluid streaks occurring under sheared air-water interfaces were examined by means of hydrogen bubble visualization technique. A critical shear condition under which the streaky structu...The characteristics of low-speed fluid streaks occurring under sheared air-water interfaces were examined by means of hydrogen bubble visualization technique. A critical shear condition under which the streaky structure first appears was determined to be u(tau) approximate to 0.19 cm/s. The mean spanwise streak spacing increases with distance from the water surface owing to merging and bursting processes, and a linear relationship describing variation of non-dimensional spacing <(<lambda>+)over bar> versus y(+) was found essentially independent of shear stress on the interface. Values of <(<lambda>+)over bar>, however, are remarkably smaller than their counterparts in the near-wall region of turbulent boundary layers. Though low-speed streaks occur randomly in time and space, the streak spacing exhibits a lognormal probability distribution behavior. A tentative explanation concerning the formation of streaky structure is suggested, and the fact that <(<lambda>+)over bar> takes rather smaller values than that in wall turbulence is briefly discussed.展开更多
It is the traditional belief that sound transmission from water to the air is very weak due to a large contrast between air and water impedances. Recently, the enhanced sound transmission and anomalous transparency of...It is the traditional belief that sound transmission from water to the air is very weak due to a large contrast between air and water impedances. Recently, the enhanced sound transmission and anomalous transparency of air-water interface have been introduced. Anomalous transparency of air-water interface states that the sound generated by a submerged shallow depth monopole point source localized at depths less than 1/10 sound wavelength, can be transmitted into the air with omni-directional pattern. The generated sound has 35 times higher power compared to the classical ray theory prediction. In this paper, sound transmission through air-water interface for a localized underwater shallow depth source is examined. To accomplish this, two-phase coupled Helmholtz wave equations in two-phase media of air-water are solved by the commercial finite element based COMSOL Multiphysics software. Ratios of pressure amplitudes of different sound sources in two different underwater and air coordinates are computed and analyzed against non-dimensional ratio of the source depth (D) to the sound wavelength (λ). The obtained results are compared with the experimental data and good agreement is displayed.展开更多
To obtain carbon dioxide (CO2) flux between water-air interface of Taihu lake, monthly water samplers at 14 sites and the local meteorological data of the lake were collected and analyzed in 1998. Carbon dioxide par...To obtain carbon dioxide (CO2) flux between water-air interface of Taihu lake, monthly water samplers at 14 sites and the local meteorological data of the lake were collected and analyzed in 1998. Carbon dioxide partial pressures (pCO2) at air-water interface in the lake were calculated using alkalinity, pH, ionic strength, active coefficient, and water temperature. The carbon fluxes at different sublakes and areas were estimated by concentration gradient between water and air in consideration of Schmidt numbers of 600 and daily mean windspeed at 10 m above water surface. The results indicated that the mean values of pCO2 in Wuli Lake,Meiliang Bay, hydrophyte area, west littoral zone, riverine mouths, and the open lake areas were 1 807.8±1 071.4(mean±standard deviation)μatm (latm=1.013 25×10^5pa), 416.3±217.0μatm, 576.5±758.8μatm, 304.2±9.43.5μatm, 1 933.6±1 144.7 μatm, and 448.5±202.6μatm, respectively. Maximum and minimum pCO2 values were found in the hypertrophic (4 053.7μatm) and the eutrophic (3.2 μatm) areas. The riverine mouth areas have the maximum fluxes (82.0±62.8 mmol/m^2a). But there was no significant difference between eutrophic and mesotrophic areas in pCO2 and the flux of CO2. The hydrophyte area, however, has the minimum (--0.58±12.9mmol/m^2a). In respect to CO2 equilibrium, input of the rivers will obviously influence inorganic carbon distribution in the riverine estuary. For example, the annual mean CO2 flux in Zhihugang River estuary was 19 times of that in Meiliang Bay, although the former is only a part of the latter. The sites in the body of the lake show a clear seasonal cycle with pCO2 higher than atmospheric equilibrium in winter, and much lower than atmospheric in summer due to CO2 consumption by photosynthesis. The CO2 amount of the net annual evasion that enters the atmosphere is 28.42×10^4 t/a, of which those from the west littoral zone and the open lake account for 53.8% and 36.7%, respectively.展开更多
A numerical model coupling atmosphere with hydrodynamics is set up in this paper, and is applied in the experimental study of Lake Biwa. Some results are obtained as : (1) whatever (SSW) in sunimer or (NNW) in winer, ...A numerical model coupling atmosphere with hydrodynamics is set up in this paper, and is applied in the experimental study of Lake Biwa. Some results are obtained as : (1) whatever (SSW) in sunimer or (NNW) in winer, there exists a positive wind-stress curl over a lake; (2) in summer the positive wind-stress curi plays an important role to form circulation in a lake and produces a special temperature field corresponding to circulation, lower in the deep water, higher in the shallow water; (3) in summer, the hypothesis of initial horizontal inhomogeneous water temperature has little effiect on the results of simulation, and (4) in winter,there is no obvious circulation formed in the lake.展开更多
This paper experimentally studied the features of air-water flow during the emptying of a water-filled prismatic tank with a bottom orifice under different conditions.The experiments were conducted with both circular ...This paper experimentally studied the features of air-water flow during the emptying of a water-filled prismatic tank with a bottom orifice under different conditions.The experiments were conducted with both circular and elliptical orifices,with and without ventilation.The evolution of bubbles,water pressure variation,and water level change with time were recorded in the experiments and analyzed.Based on the results,the evolution of bubbles could be mainly divided into three stages of formation,deformation,and decomposition.Ventilation was found important to the emptying process,with which the drainage efficiency was much higher than that under the unventilated condition.Additionally,under the unventilated condition,the drainage efficiency with the circular orifice was slightly higher than that with the elliptical orifice.展开更多
Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the prope...Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns.展开更多
A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac...A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.展开更多
Perfluorooctanoyl modified poly(vinyl alcohol)s (FPVA) were prepared by means of substituting a small amount of hydroxyl groups on the backbone of poly(vinyl alcohol), for which the initial degree of polymerization is...Perfluorooctanoyl modified poly(vinyl alcohol)s (FPVA) were prepared by means of substituting a small amount of hydroxyl groups on the backbone of poly(vinyl alcohol), for which the initial degree of polymerization is equal to 1750. The substitution extent, defined by the number of substituting units in a chain, for the four FPVA samples was in the range of 0.5-5 perfluorooctanoyl groups per chain. The FPVA samples with the highest substitution extent still had good solubility in water. It was shown by experimental measurement at 30.0 +/- 0.1 degreesC that the surface tension of the aqueous solution of the highest substituted FPVA decreased to 16.6 mN/m at a higher concentration, e.g. about 0.1 g/mL. Obviously, macromolecules of FPVA exhibit a very strong tendency to adsorb at the air-water interface, because the hydrophobic perfluorooctanoyl groups in FPVA have a very high surface activity as they are in small molecular fluorinated surfactants. The chain conformation of such a model polymer adsorbed on the air-water interface was also discussed.展开更多
The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of th...The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of the traditional muzzle jet.Specifically,it changes from freely developing to doing so in a constrained manner,where this results in an asymmetric direction of flow as well as spatio-temporal coupling-induced interference between various shock waves and the formation of vortices.In this background,the authors of this article formulate and consider the development and characteristics of evolution of the muzzle jet as it impacts a constrained moving body.We designed simulations to test the gun-track launch system,and established a numerical model based on the dynamic grid method to explore the development and characteristics of propagation of disturbances when the muzzle jet impacted a constrained moving body.We also considered models without a constrained track for the sake of comparison.The results showed that the muzzle jet assumed a circumferential asymmetric shape,and tended to develop in the area above the muzzle.Because the test platform was close to the ground,the muzzle jet was subjected to reflections from it that enhanced the development and evolution of various forms of shock waves and vortices in the muzzle jet to exacerbate its rate of distortion and asymmetric characteristics.This in turn led to significant differences in the changes in pressure at symmetric points that would otherwise have been identical.The results of a comparative analysis showed that the constrained track could hinder the influence of reflections from the ground on the muzzle jet to some extent,and could reduce the velocity of the shock waves inducing the motion of the muzzle as well as the Mach number of the moving body.The work here provides a theoretical basis and the requisite technical support for applications of the gun-track launch system.It also sheds light on the technical bottlenecks that need to be considered to recover high-value warheads.展开更多
Photoisomerization of a new polymer: monoesters of polymaleic acid containing naphthalene-azo-anthraquinone groups in side chains at the air-water interface of a Langmuir trough wan detected by recording the developme...Photoisomerization of a new polymer: monoesters of polymaleic acid containing naphthalene-azo-anthraquinone groups in side chains at the air-water interface of a Langmuir trough wan detected by recording the development of surface pressure with time. This process wan found to be a first-order reaction and complete within several minutes.展开更多
Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the i...Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.展开更多
The forces acting on submillimeter spheres at the air-water interface are investigated theoretically and experimentally. To calculate the capillary force acting on the sphere, an iterative method is used to determine ...The forces acting on submillimeter spheres at the air-water interface are investigated theoretically and experimentally. To calculate the capillary force acting on the sphere, an iterative method is used to determine the immersing position of the liquid interface on the sphere for a given distance. Then the total forces acting on the sphere are considered. The scaling effects of the net force acting on the sphere at the air-water interface are demonstrated. For the experiments, the force-position relationship of microspheres is measured with a precise electronic balance. The results show that the evaporation of the liquid in the container affects the measuring results greatly under ambient conditions. After considering the evaporation compensation, there is a great agree- ment between the theoretical and experimental results. Obvious hysteresis phenomena of the force-distance curve during the emersion processes are also observed and explained.展开更多
The medium-temperature T dependence of the jet transport coefficient̂q was studied via the nuclear modification factor RAA(p_(T))and elliptical flow parameter v_(2)(p_(T))for large transverse momentum p_(T) hadrons in...The medium-temperature T dependence of the jet transport coefficient̂q was studied via the nuclear modification factor RAA(p_(T))and elliptical flow parameter v_(2)(p_(T))for large transverse momentum p_(T) hadrons in high-energy nucleus-nucleus collisions.Within a next-to-leading-order perturbative QCD parton model for hard scatterings with modified fragmentation functions due to jet quenching controlled by q,we check the suppression and azimuthal anisotropy for large p_(T) hadrons,and extract q by global fits to RAA(pT)and v_(2)(pT)data in A+A collisions at RHIC and LHC,respectively.The numerical results from the best fits show that q∕T^(3) goes down with local medium-temperature T in the parton jet trajectory.Compared with the case of a constant q∕T^(3),the going-down T dependence of q∕T^(3) makes a hard parton jet to lose more energy near T_(c) and therefore strengthens the azimuthal anisotropy for large pT hadrons.As a result,v_(2)(p_(T))for large pT hadrons was enhanced by approximately 10%to better fit the data at RHIC/LHC.Considering the first-order phase transition from QGP to the hadron phase and the additional energy loss in the hadron phase,v_(2)(p_(T))is again enhanced by 5-10%at RHIC/LHC.展开更多
The theoretical model suggests that relativistic jets of active galactic nuclei(AGNs)rely on the black hole spin and/or accretion.We study the relationship between jet,accretion,and spin using supermassive black hole ...The theoretical model suggests that relativistic jets of active galactic nuclei(AGNs)rely on the black hole spin and/or accretion.We study the relationship between jet,accretion,and spin using supermassive black hole samples with reliable spin of black holes.Our results are as follows:(1)There is a weak correlation between radio luminosity and the spin of the black hole for our sample,which may imply that the jet of the supermassive black hole in our sample depends on the other physical parameters besides black hole spins,such as accretion disk luminosity.(2)The jet power of a supermassive black hole can be explained by the hybrid model with magnetic field of corona.(3)There is a significant correlation between radio-loudness and black hole spin for our sample.These sources with high radio-loudness tend to have high black hole spins.These results provide observational evidence that the black hole spin may explain the bimodal phenomena of radio-loud and radio-quiet AGNs.展开更多
Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium cond...Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium conditions were investigated accordingly.The results indicate that the optimal scouring effects occur when the jet angle is in the ranges between 15°and 20°.Moreover,the dimensionless profiles of the scour hole exhibit a high degree of similarity at different jet angles.Numerical simulations conducted using the Flow-3D software to investigate the bed shear stress along the jet impingement surface have shown that this stress is influenced by both the resultant force and the jet impingement surface area.It reaches its maximum value when the jet is vertical,decreases rapidly as the jet starts to tilt,then increases slightly,and decreases again significantly when the angle exceeds 20°.展开更多
Fabrication of anisotropic material is one of the important topics and we examined to introduce “anisotropic” nature by spreading polymer-grafted particle on the medium with polymer-reactive potential. Poly (tert-bu...Fabrication of anisotropic material is one of the important topics and we examined to introduce “anisotropic” nature by spreading polymer-grafted particle on the medium with polymer-reactive potential. Poly (tert-butyl methacrylate) (PtBMA) was polymerized from polystyrene latex (PSL) surface by ATRP to give PtBMA-grafted PSL (PSL-PtBMA). Particle monolayer was formed at air-water and air-acidic water interfaces and the monolayer characteristics were compared by π-A isotherm measurements, SEM observations, and contact angle measurements. π-A isotherms, in particular, indicates that the interaction between polymer chains become stronger by changing the subphase condition, which suggests that anisotropicparticle monolayer formation.展开更多
It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanw...It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanwhile keeping the structure intact.To overcome this challenge,small-grooved components made of aluminum alloy with sizes less than 1 mm were fabricated by a custom-made printer.A novel approach to multi-phase jet(MPJ)polishing is proposed,utilizing a self-developed polisher that incorporates solid,liquid,and gas phases.In contrast,abrasive air jet(AAJ)polishing is recommended,employing a customized polisher that combines solid and gas phases.After jet polishing,surface roughness(Sa)on the interior surface of grooves decreases from pristine 8.596μm to 0.701μm and 0.336μm via AAJ polishing and MPJ polishing,respectively,and Sa reduces 92%and 96%,correspondingly.Furthermore,a formula defining the relationship between linear energy density and unit defect volume has been developed.The optimized parameters in additive manufacturing are that linear energy density varies from 0.135 J mm^(-1)to 0.22 J mm^(-1).The unit area defect volume achieved via the optimized parameters decreases to 1/12 of that achieved via non-optimized ones.Computational fluid dynamics simulation results reveal that material is removed by shear stress,and the alumina abrasives experience multiple collisions with the defects on the heat pipe groove,resulting in uniform material removal.This is in good agreement with the experimental results.The novel proposed setups,approach,and findings provide new insights into manufacturing complex-structured components,polishing the small-grooved structure,and keeping it unbroken.展开更多
文摘目的:对采用水刀与传统小切口修剪术两种术式治疗腋臭的疗效进行系统评价。方法:应用计算机检索知网、万方、维普、CBM、PubMed、Embase、Web Of Science等数据库,收集国内外有关水刀及传统小切口皮下修剪治疗腋臭的随机对照试验研究、临床对照研究。对纳入的文献进行质量评价并进行资料提取后,采用RevMan 5.4软件进行Meta分析。结果:最终共纳入7篇文献,其中中文5篇,英文2篇,共纳入662例患者,1324侧腋窝,其中水刀组340例(680侧腋窝),传统手术组322例(644侧腋窝)。Meta分析结果显示,水刀相对于传统手术治疗腋臭在术后早期并发症发生率(RR=0.28)、术后瘢痕发生率(RR=0.26)、术后满意度(非常满意,RR=1.43)上更有优势(P<0.05);水刀相对于传统手术治疗腋臭在治愈率(OR=1.36)上差异无统计学意义(P>0.05)。结论:水刀与传统手术治疗腋臭比较,在术后早期并发症发生率、术后瘢痕发生率、术后满意度(非常满意)上更有优势;在治愈率上两者差异无统计学意义。由于纳入的文献缺少RCT研究,且样本量偏少,需进一步开展更高质量的RCT加以验证。
基金The project supported by the National Natural Science Foundation of China (Grant No.19672070)
文摘The turbulence structures near a sheared air-water interface were experimentally investigated with the hydrogen bubble visualization technique. Surface shear was imposed by an airflow over the water flow which was kept free from surface waves. Results show that the wind shear has the main influence on coherent structures under air-water interfaces. Low- and high- speed streaks form in the region close to the interface as a result of the imposed shear stress. When a certain airflow velocity is reached, “turbulent spots” appear randomly at low-speed streaks with some characteristics of hairpin vortices. At even higher shear rates, the flow near the interface is dominated primarily by intermittent bursting events. The coherent structures observed near sheared air-water interfaces show qualitative similarities with those occurring in near-wall turbulence. However, a few distinctive phenomena were also observed, including the fluctuating thickness of the instantaneous boundary layer and vertical vortices in bursting processes, which appear to be associated with the characteristics of air-water interfaces.
基金Project supported by the National Council for Science and Tech-nology of Mexico (CONACYT)
文摘During the last three decades, the introduction of new construction materials (e.g. RCC (Roller Compacted Concrete), strengthened gabions) has increased the interest for stepped channels and spillways. However stepped chute hydraulics is not simple, because of different flow regimes and importantly because of very-strong interactions between entrained air and turbu- lence. In this study, new air-water flow measurements were conducted in two large-size stepped chute facilities with two step heights in each facility to study experimental distortion caused by scale effects and the soundness of result extrapolation to pro- totypes. Experimental data included distributions of air concentration, air-water flow velocity, bubble frequency, bubble chord length and air-water flow turbulence intensity. For a Froude similitude, the results implied that scale effects were observed in both facilities, although the geometric scaling ratio was only Lr=2 in each case. The selection of the criterion for scale effects is a critical issue. For example, major differences (i.e. scale effects) were observed in terms of bubble chord sizes and turbulence levels al- though little scale effects were seen in terms of void fraction and velocity distributions. Overall the findings emphasize that physical modelling of stepped chutes based upon a Froude similitude is more sensitive to scale effects than classical smooth-invert chute studies, and this is consistent with basic dimensional analysis developed herein.
基金The project supported by the National Natural Science Foundation of China (19672070)
文摘The characteristics of low-speed fluid streaks occurring under sheared air-water interfaces were examined by means of hydrogen bubble visualization technique. A critical shear condition under which the streaky structure first appears was determined to be u(tau) approximate to 0.19 cm/s. The mean spanwise streak spacing increases with distance from the water surface owing to merging and bursting processes, and a linear relationship describing variation of non-dimensional spacing <(<lambda>+)over bar> versus y(+) was found essentially independent of shear stress on the interface. Values of <(<lambda>+)over bar>, however, are remarkably smaller than their counterparts in the near-wall region of turbulent boundary layers. Though low-speed streaks occur randomly in time and space, the streak spacing exhibits a lognormal probability distribution behavior. A tentative explanation concerning the formation of streaky structure is suggested, and the fact that <(<lambda>+)over bar> takes rather smaller values than that in wall turbulence is briefly discussed.
文摘It is the traditional belief that sound transmission from water to the air is very weak due to a large contrast between air and water impedances. Recently, the enhanced sound transmission and anomalous transparency of air-water interface have been introduced. Anomalous transparency of air-water interface states that the sound generated by a submerged shallow depth monopole point source localized at depths less than 1/10 sound wavelength, can be transmitted into the air with omni-directional pattern. The generated sound has 35 times higher power compared to the classical ray theory prediction. In this paper, sound transmission through air-water interface for a localized underwater shallow depth source is examined. To accomplish this, two-phase coupled Helmholtz wave equations in two-phase media of air-water are solved by the commercial finite element based COMSOL Multiphysics software. Ratios of pressure amplitudes of different sound sources in two different underwater and air coordinates are computed and analyzed against non-dimensional ratio of the source depth (D) to the sound wavelength (λ). The obtained results are compared with the experimental data and good agreement is displayed.
基金This research was supported by the Knowledge Innovation Project of Chinese Academy of Sciences (KZCX1-SW-01-15) and (KZCX1- SW-12)
文摘To obtain carbon dioxide (CO2) flux between water-air interface of Taihu lake, monthly water samplers at 14 sites and the local meteorological data of the lake were collected and analyzed in 1998. Carbon dioxide partial pressures (pCO2) at air-water interface in the lake were calculated using alkalinity, pH, ionic strength, active coefficient, and water temperature. The carbon fluxes at different sublakes and areas were estimated by concentration gradient between water and air in consideration of Schmidt numbers of 600 and daily mean windspeed at 10 m above water surface. The results indicated that the mean values of pCO2 in Wuli Lake,Meiliang Bay, hydrophyte area, west littoral zone, riverine mouths, and the open lake areas were 1 807.8±1 071.4(mean±standard deviation)μatm (latm=1.013 25×10^5pa), 416.3±217.0μatm, 576.5±758.8μatm, 304.2±9.43.5μatm, 1 933.6±1 144.7 μatm, and 448.5±202.6μatm, respectively. Maximum and minimum pCO2 values were found in the hypertrophic (4 053.7μatm) and the eutrophic (3.2 μatm) areas. The riverine mouth areas have the maximum fluxes (82.0±62.8 mmol/m^2a). But there was no significant difference between eutrophic and mesotrophic areas in pCO2 and the flux of CO2. The hydrophyte area, however, has the minimum (--0.58±12.9mmol/m^2a). In respect to CO2 equilibrium, input of the rivers will obviously influence inorganic carbon distribution in the riverine estuary. For example, the annual mean CO2 flux in Zhihugang River estuary was 19 times of that in Meiliang Bay, although the former is only a part of the latter. The sites in the body of the lake show a clear seasonal cycle with pCO2 higher than atmospheric equilibrium in winter, and much lower than atmospheric in summer due to CO2 consumption by photosynthesis. The CO2 amount of the net annual evasion that enters the atmosphere is 28.42×10^4 t/a, of which those from the west littoral zone and the open lake account for 53.8% and 36.7%, respectively.
文摘A numerical model coupling atmosphere with hydrodynamics is set up in this paper, and is applied in the experimental study of Lake Biwa. Some results are obtained as : (1) whatever (SSW) in sunimer or (NNW) in winer, there exists a positive wind-stress curl over a lake; (2) in summer the positive wind-stress curi plays an important role to form circulation in a lake and produces a special temperature field corresponding to circulation, lower in the deep water, higher in the shallow water; (3) in summer, the hypothesis of initial horizontal inhomogeneous water temperature has little effiect on the results of simulation, and (4) in winter,there is no obvious circulation formed in the lake.
基金The writers gratefully acknowledge financial support from the Fundamental Research Funds for the Central Universities(2020QNA4017).
文摘This paper experimentally studied the features of air-water flow during the emptying of a water-filled prismatic tank with a bottom orifice under different conditions.The experiments were conducted with both circular and elliptical orifices,with and without ventilation.The evolution of bubbles,water pressure variation,and water level change with time were recorded in the experiments and analyzed.Based on the results,the evolution of bubbles could be mainly divided into three stages of formation,deformation,and decomposition.Ventilation was found important to the emptying process,with which the drainage efficiency was much higher than that under the unventilated condition.Additionally,under the unventilated condition,the drainage efficiency with the circular orifice was slightly higher than that with the elliptical orifice.
基金This work has been supported by the Conselleria de Inno-vación,Universidades,Ciencia y Sociedad Digital de la Generalitat Valenciana(CIAICO/2021/335).
文摘Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns.
基金supported by the Program for National Defense Science and Technology Foundation Strengtheningthe Youth Foundation of Rocket Force University of Engineering(Grant No.2021QN-B014)。
文摘A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.
基金The project was supported by the National Natural Science Foundation of China (No.29774016).
文摘Perfluorooctanoyl modified poly(vinyl alcohol)s (FPVA) were prepared by means of substituting a small amount of hydroxyl groups on the backbone of poly(vinyl alcohol), for which the initial degree of polymerization is equal to 1750. The substitution extent, defined by the number of substituting units in a chain, for the four FPVA samples was in the range of 0.5-5 perfluorooctanoyl groups per chain. The FPVA samples with the highest substitution extent still had good solubility in water. It was shown by experimental measurement at 30.0 +/- 0.1 degreesC that the surface tension of the aqueous solution of the highest substituted FPVA decreased to 16.6 mN/m at a higher concentration, e.g. about 0.1 g/mL. Obviously, macromolecules of FPVA exhibit a very strong tendency to adsorb at the air-water interface, because the hydrophobic perfluorooctanoyl groups in FPVA have a very high surface activity as they are in small molecular fluorinated surfactants. The chain conformation of such a model polymer adsorbed on the air-water interface was also discussed.
文摘The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of the traditional muzzle jet.Specifically,it changes from freely developing to doing so in a constrained manner,where this results in an asymmetric direction of flow as well as spatio-temporal coupling-induced interference between various shock waves and the formation of vortices.In this background,the authors of this article formulate and consider the development and characteristics of evolution of the muzzle jet as it impacts a constrained moving body.We designed simulations to test the gun-track launch system,and established a numerical model based on the dynamic grid method to explore the development and characteristics of propagation of disturbances when the muzzle jet impacted a constrained moving body.We also considered models without a constrained track for the sake of comparison.The results showed that the muzzle jet assumed a circumferential asymmetric shape,and tended to develop in the area above the muzzle.Because the test platform was close to the ground,the muzzle jet was subjected to reflections from it that enhanced the development and evolution of various forms of shock waves and vortices in the muzzle jet to exacerbate its rate of distortion and asymmetric characteristics.This in turn led to significant differences in the changes in pressure at symmetric points that would otherwise have been identical.The results of a comparative analysis showed that the constrained track could hinder the influence of reflections from the ground on the muzzle jet to some extent,and could reduce the velocity of the shock waves inducing the motion of the muzzle as well as the Mach number of the moving body.The work here provides a theoretical basis and the requisite technical support for applications of the gun-track launch system.It also sheds light on the technical bottlenecks that need to be considered to recover high-value warheads.
文摘Photoisomerization of a new polymer: monoesters of polymaleic acid containing naphthalene-azo-anthraquinone groups in side chains at the air-water interface of a Langmuir trough wan detected by recording the development of surface pressure with time. This process wan found to be a first-order reaction and complete within several minutes.
基金supported by the 2nd Scientific Expedition to the Qinghai–Tibet Plateau[grant number 2019QZKK0102]the National Natural Science Foundation of China[grant number 42275045,41975012]+3 种基金the West Light Foundation of the Chinese Academy of Sciences[grant number xbzg-zdsys-202215]the Science and Technology Research Plan of Gansu Province[grant number 20JR10RA070]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number QCH2019004]iLEAPs(integrated Land Ecosystem–Atmosphere Processes Study).
文摘Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.
基金Supported by the National Natural Science Foundation of China under Grant No 61005072the Self-Planned Task of State Key Laboratory of Robotics and System under Grant Nos SKLRS201501A04 and SKLRS201301A01
文摘The forces acting on submillimeter spheres at the air-water interface are investigated theoretically and experimentally. To calculate the capillary force acting on the sphere, an iterative method is used to determine the immersing position of the liquid interface on the sphere for a given distance. Then the total forces acting on the sphere are considered. The scaling effects of the net force acting on the sphere at the air-water interface are demonstrated. For the experiments, the force-position relationship of microspheres is measured with a precise electronic balance. The results show that the evaporation of the liquid in the container affects the measuring results greatly under ambient conditions. After considering the evaporation compensation, there is a great agree- ment between the theoretical and experimental results. Obvious hysteresis phenomena of the force-distance curve during the emersion processes are also observed and explained.
基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)Science and Technology Program of Guangzhou(No.2019050001)National Science Foundation of China(Nos.12347130 and 11935007).
文摘The medium-temperature T dependence of the jet transport coefficient̂q was studied via the nuclear modification factor RAA(p_(T))and elliptical flow parameter v_(2)(p_(T))for large transverse momentum p_(T) hadrons in high-energy nucleus-nucleus collisions.Within a next-to-leading-order perturbative QCD parton model for hard scatterings with modified fragmentation functions due to jet quenching controlled by q,we check the suppression and azimuthal anisotropy for large p_(T) hadrons,and extract q by global fits to RAA(pT)and v_(2)(pT)data in A+A collisions at RHIC and LHC,respectively.The numerical results from the best fits show that q∕T^(3) goes down with local medium-temperature T in the parton jet trajectory.Compared with the case of a constant q∕T^(3),the going-down T dependence of q∕T^(3) makes a hard parton jet to lose more energy near T_(c) and therefore strengthens the azimuthal anisotropy for large pT hadrons.As a result,v_(2)(p_(T))for large pT hadrons was enhanced by approximately 10%to better fit the data at RHIC/LHC.Considering the first-order phase transition from QGP to the hadron phase and the additional energy loss in the hadron phase,v_(2)(p_(T))is again enhanced by 5-10%at RHIC/LHC.
基金financial support from the National Natural Science Foundation of China(NSFC,No.12203028)supported by the research project of Qujing Normal University(2105098001/094)+4 种基金supported by the youth project of Yunnan Provincial Science and Technology Department(202101AU070146,2103010006)funding for the training Program for talents in Xingdian,Yunnan Provincesupported by the NSFC(12121003,12192220,and 12192222)the science research grants from the China Manned Space Project with No.CMS-CSST-2021-A05supported by the NSFC(11733001,U2031201 and 12433004)。
文摘The theoretical model suggests that relativistic jets of active galactic nuclei(AGNs)rely on the black hole spin and/or accretion.We study the relationship between jet,accretion,and spin using supermassive black hole samples with reliable spin of black holes.Our results are as follows:(1)There is a weak correlation between radio luminosity and the spin of the black hole for our sample,which may imply that the jet of the supermassive black hole in our sample depends on the other physical parameters besides black hole spins,such as accretion disk luminosity.(2)The jet power of a supermassive black hole can be explained by the hybrid model with magnetic field of corona.(3)There is a significant correlation between radio-loudness and black hole spin for our sample.These sources with high radio-loudness tend to have high black hole spins.These results provide observational evidence that the black hole spin may explain the bimodal phenomena of radio-loud and radio-quiet AGNs.
基金supported by Research on the Influence of Nozzle Structure on the Scouring Effect of Submerged Water Jet(2023R411045)Design and Control Strategy Research of PEM Fuel Cell Hybrid Propulsion System for Ships(2024R411015)+1 种基金Zhejiang Ocean University Outstanding Master’s Thesis Cultivation Project(ZJOUYJS20230018)General Program of Education Department of Zhejiang Province(Y202250817)which was gained by Chen.
文摘Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium conditions were investigated accordingly.The results indicate that the optimal scouring effects occur when the jet angle is in the ranges between 15°and 20°.Moreover,the dimensionless profiles of the scour hole exhibit a high degree of similarity at different jet angles.Numerical simulations conducted using the Flow-3D software to investigate the bed shear stress along the jet impingement surface have shown that this stress is influenced by both the resultant force and the jet impingement surface area.It reaches its maximum value when the jet is vertical,decreases rapidly as the jet starts to tilt,then increases slightly,and decreases again significantly when the angle exceeds 20°.
基金This work was financially supported by a grant-in-aid(No.19750099,24850015)from JSPS.
文摘Fabrication of anisotropic material is one of the important topics and we examined to introduce “anisotropic” nature by spreading polymer-grafted particle on the medium with polymer-reactive potential. Poly (tert-butyl methacrylate) (PtBMA) was polymerized from polystyrene latex (PSL) surface by ATRP to give PtBMA-grafted PSL (PSL-PtBMA). Particle monolayer was formed at air-water and air-acidic water interfaces and the monolayer characteristics were compared by π-A isotherm measurements, SEM observations, and contact angle measurements. π-A isotherms, in particular, indicates that the interaction between polymer chains become stronger by changing the subphase condition, which suggests that anisotropicparticle monolayer formation.
基金the National Key Research and Development Program of China(2018YFA0703400)the Young Scientists Fund of the National Natural Science Foundation of China(52205447)Changjiang Scholars Program of the Chinese Ministry of Education。
文摘It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanwhile keeping the structure intact.To overcome this challenge,small-grooved components made of aluminum alloy with sizes less than 1 mm were fabricated by a custom-made printer.A novel approach to multi-phase jet(MPJ)polishing is proposed,utilizing a self-developed polisher that incorporates solid,liquid,and gas phases.In contrast,abrasive air jet(AAJ)polishing is recommended,employing a customized polisher that combines solid and gas phases.After jet polishing,surface roughness(Sa)on the interior surface of grooves decreases from pristine 8.596μm to 0.701μm and 0.336μm via AAJ polishing and MPJ polishing,respectively,and Sa reduces 92%and 96%,correspondingly.Furthermore,a formula defining the relationship between linear energy density and unit defect volume has been developed.The optimized parameters in additive manufacturing are that linear energy density varies from 0.135 J mm^(-1)to 0.22 J mm^(-1).The unit area defect volume achieved via the optimized parameters decreases to 1/12 of that achieved via non-optimized ones.Computational fluid dynamics simulation results reveal that material is removed by shear stress,and the alumina abrasives experience multiple collisions with the defects on the heat pipe groove,resulting in uniform material removal.This is in good agreement with the experimental results.The novel proposed setups,approach,and findings provide new insights into manufacturing complex-structured components,polishing the small-grooved structure,and keeping it unbroken.