This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. B...This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. Based on this feature, the assignment relation of time-nearby target is calculated via Mahalanobis distance, and then the corresponding transformation formula is deduced. The simulation results show the correctness and effectiveness of the proposed method.展开更多
After analyzing the characteristics of airborne SAR motion deviation in detail, a new realization method for airborne SAR motion compensation based on two-dimensional division processing is described. By combining the...After analyzing the characteristics of airborne SAR motion deviation in detail, a new realization method for airborne SAR motion compensation based on two-dimensional division processing is described. By combining the division of local tracks in azimuth direction and the division of sub-mapping strips in range direction, the motion deviation will be compensated accurately. Furthermore, both theoretic analysis and simulation result show that by using this method the problems of motion compensation under complex condition with large motion deviation and large mapping strip width can be resolved well.展开更多
Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do no...Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively.展开更多
Airborne Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR) baseline error is a main error resource affecting the precision of velocity measurement of moving objects and therefore should be calibrated exte...Airborne Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR) baseline error is a main error resource affecting the precision of velocity measurement of moving objects and therefore should be calibrated externally. The Jet Propulsion Laboratory (JPL) has proposed a calibration scheme for tasks of PacRim98 and PacRim2000 based on several static objects on the ground. In this paper, the influence of phase center uncertainty on baseline determination by using PacRim method proposed by JPL is analyzed. According to the analysis, the phase center uncertainty can cause a constant part of error to the result of baseline calibration. In order to deal with this problem, an improved calibration method on the basis of sensitivity equations and some ground moving targets, whose velocities are already known, is proposed in this paper. The simulation results show that our proposed calibration method has improved the accuracy of baseline calibration and has obviously prohibited the effect of antennas' phase center uncertainty.展开更多
基金Supported by the National Natural Science Foundation of China Youth Science Fund Project(Nos.62101405,61372185)
文摘This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. Based on this feature, the assignment relation of time-nearby target is calculated via Mahalanobis distance, and then the corresponding transformation formula is deduced. The simulation results show the correctness and effectiveness of the proposed method.
文摘After analyzing the characteristics of airborne SAR motion deviation in detail, a new realization method for airborne SAR motion compensation based on two-dimensional division processing is described. By combining the division of local tracks in azimuth direction and the division of sub-mapping strips in range direction, the motion deviation will be compensated accurately. Furthermore, both theoretic analysis and simulation result show that by using this method the problems of motion compensation under complex condition with large motion deviation and large mapping strip width can be resolved well.
基金Project(2009AA11Z220)supported by the National High Technology Research and Development Program of China
文摘Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively.
基金Supported by the Key Project of National Natural Science Foundation of China (No. 60890070)
文摘Airborne Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR) baseline error is a main error resource affecting the precision of velocity measurement of moving objects and therefore should be calibrated externally. The Jet Propulsion Laboratory (JPL) has proposed a calibration scheme for tasks of PacRim98 and PacRim2000 based on several static objects on the ground. In this paper, the influence of phase center uncertainty on baseline determination by using PacRim method proposed by JPL is analyzed. According to the analysis, the phase center uncertainty can cause a constant part of error to the result of baseline calibration. In order to deal with this problem, an improved calibration method on the basis of sensitivity equations and some ground moving targets, whose velocities are already known, is proposed in this paper. The simulation results show that our proposed calibration method has improved the accuracy of baseline calibration and has obviously prohibited the effect of antennas' phase center uncertainty.