Ground constructions and mines are severely threatened by ones. Safe and precise cavity detection is vital for reasonable cavity underground cavities especially those unsafe or inaccessible evaluation and disposal. Th...Ground constructions and mines are severely threatened by ones. Safe and precise cavity detection is vital for reasonable cavity underground cavities especially those unsafe or inaccessible evaluation and disposal. The conventional cavity detection methods and their limitation were analyzed. Those methods cannot form 3D model of underground cavity which is used for instructing the cavity disposal; and their precisions in detection are always greatly affected by the geological circumstance. The importance of 3D cavity detection in metal mine for safe exploitation was pointed out; and the 3D cavity laser detection method and its principle were introduced. A cavity auto scanning laser system was recommended to actualize the cavity 3D detection after comparing with the other laser detection systems. Four boreholes were chosen to verify the validity of the cavity auto scanning laser system. The results show that the cavity auto scanning laser system is very suitable for underground 3D cavity detection, especially for those inaccessible ones.展开更多
Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3...Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3D laser scanning technology to mountain mapping,the conventional mathematical cloud-based point cloud hole repair method is not ideal in practical applications.In order to solve this problem,we propose to repair the valley and ridge line first,and then repair the point cloud hole.The main technical steps of the method include the following points:First,the valley and ridge feature lines are extracted by the GIS slope analysis method;Then,the valley and ridge line missing from the hole are repaired by the mathematical interpolation method,and the repaired results are edited and inserted to the original point cloud;Finally,the traditional repair method is used to repair the point cloud hole whose valley line and ridge line have been repaired.Three experiments were designed and implemented in the east bank of the Xiaobaini River to test the performance of the proposed method.The results showed that compared with the direct point cloud hole repair method in Geomagic Studio software,the average repair accuracy of the proposed method,in the 16 m buffer zone of valley line and ridge line,is increased from 56.31 cm to 31.49 cm.The repair performance is significantly improved.展开更多
3D ground-penetrating radar has been widely used in urban road underground disease detection due to its nondestructive,efficient,and intuitive results.However,the 3D imaging of the underground target body presents the...3D ground-penetrating radar has been widely used in urban road underground disease detection due to its nondestructive,efficient,and intuitive results.However,the 3D imaging of the underground target body presents the edge plate phenomenon due to the space between the 3D radar array antennas.Consequently,direct 3D imaging using detection results cannot reflect underground spatial distribution characteristics.Due to the wide-beam polarization of the ground-penetrating radar antenna,the emission of electromagnetic waves with a specific width decreases the strong middle energy on both sides gradually.Therefore,a bicubic high-precision 3D target body slice-imaging fitting algorithm with changing trend characteristics is constructed by combining the subsurface target characteristics with the changing spatial morphology trends.Using the wide-angle polarization antenna’s characteristics in the algorithm to build the trend factor between the measurement lines,the target body change trend and the edge detail portrayal achieve a 3D ground-penetrating radar-detection target high-precision fitting.Compared with other traditional fitting techniques,the fitting error is small.This paper conducts experiments and analyses on GpaMax 3D forward modeling and 3D ground-penetrating measured radar data.The experiments show that the improved bicubic fitting algorithm can eff ectively improve the accuracy of underground target slice imaging and the 3D ground-penetrating radar’s anomaly interpretation.展开更多
Holoscopic 3D imaging is a true 3D imaging system mimics fly’s eye technique to acquire a true 3D optical model of a real scene. To reconstruct the 3D image computationally, an efficient implementation of an Auto-Fea...Holoscopic 3D imaging is a true 3D imaging system mimics fly’s eye technique to acquire a true 3D optical model of a real scene. To reconstruct the 3D image computationally, an efficient implementation of an Auto-Feature-Edge (AFE) descriptor algorithm is required that provides an individual feature detector for integration of 3D information to locate objects in the scene. The AFE descriptor plays a key role in simplifying the detection of both edge-based and region-based objects. The detector is based on a Multi-Quantize Adaptive Local Histogram Analysis (MQALHA) algorithm. This is distinctive for each Feature-Edge (FE) block i.e. the large contrast changes (gradients) in FE are easier to localise. The novelty of this work lies in generating a free-noise 3D-Map (3DM) according to a correlation analysis of region contours. This automatically combines the exploitation of the available depth estimation technique with edge-based feature shape recognition technique. The application area consists of two varied domains, which prove the efficiency and robustness of the approach: a) extracting a set of setting feature-edges, for both tracking and mapping process for 3D depthmap estimation, and b) separation and recognition of focus objects in the scene. Experimental results show that the proposed 3DM technique is performed efficiently compared to the state-of-the-art algorithms.展开更多
An ILRIS-36D 3-D laser image scanning system was used to monitor the Anjialing strip mine slope on Pingshuo in Shanxi province. The basic working principles, performance indexes, features and data collection and proce...An ILRIS-36D 3-D laser image scanning system was used to monitor the Anjialing strip mine slope on Pingshuo in Shanxi province. The basic working principles, performance indexes, features and data collection and processing methods are illus-trated. The point cloud results are analyzed in detail. The rescale range analysis method was used to analyze the deformation char-acteristics of the slope. The results show that the trend of slope displacement is stable and that the degree of landslide danger is low. This work indicates that 3-D laser image scanning can supply multi-parameter, high precision real time data over long distances. These data can be used to study the distortion of the slope quickly and accurately.展开更多
A new multi-mode resistivity imaging sonde, with toroidal coils as source, can conduct three resistivity measurements: azimuthal resistivity, lateral resistivity, and bit resistivity measurements. Thus, the logging ti...A new multi-mode resistivity imaging sonde, with toroidal coils as source, can conduct three resistivity measurements: azimuthal resistivity, lateral resistivity, and bit resistivity measurements. Thus, the logging time and cost are greatly saved. The toroidal coils are simplified as an extended voltage dipole and the response equations are derived for a homogenous formation. Based on 3D FEM, the depth of investigation(DOI), vertical resolution, circumferential azimuthal capacity, borehole diameter, mud resistivity, thickness of target formation, and the resistivity of the surrounding formation and mud invasion are simulated. The results suggest that the three measurement modes of the new sonde are different in vertical resolutions and DOIs. The circumferential detection ability of the azimuth button depends on the contrast between the anomaly and formation resistivity and the open angle of the anomaly. Whether the borehole is truncated at the bit or not has a great influence on the simulation results. The borehole and mud invasion affect the apparent resistivity in all modes, but the effects of resistivity of surrounding formation and thickness of the target formation are only corrected for lateral resistivity measurement.展开更多
Within this work,we present a system for the measurement of the three-dimensional(3D)trajectories of spatters and entrained particles during laser powder bed fusion(L-PBF)of metals.It is comprised of two ultrahigh-spe...Within this work,we present a system for the measurement of the three-dimensional(3D)trajectories of spatters and entrained particles during laser powder bed fusion(L-PBF)of metals.It is comprised of two ultrahigh-speed cameras and a reconstruction task specific processing reconstruction algorithm.The system enables an automated determination of 3D measures from the trajectories of a large number of tracked particles.Ambiguity evolving from an underdetermined geometrical situation induced by a two-camera setup is resolved within the tracking using a priori knowledge of L-PBF of metals.All processing steps were optimized to run on a graphics processing unit to allow the processing of large amounts of data within an appropriate time frame.The overall approach was validated by a comparison of the measurement results to synthetic images with a known 3D ground truth.展开更多
We propose a laser speckle contrast imaging method based on uniting spatiotemporal Fourier transform.First,the raw speckle images are entirely transformed to the spatiotemporal frequency domain with a three-dimensiona...We propose a laser speckle contrast imaging method based on uniting spatiotemporal Fourier transform.First,the raw speckle images are entirely transformed to the spatiotemporal frequency domain with a three-dimensional(3D)fast Fourier transform.Second,the dynamic and static speckle components are extracted by applying 3D low-pass and high-pass filtering in the spatiotemporal frequency domain and inverse 3D Fourier transform.Third,we calculate the time-averaged modulation depth with the average of both components to map the two-dimensional blood flow distribution.The experiments demonstrate that the proposed method could effectively improve computational efficiency and imaging quality.展开更多
Vision-based technologies have been extensively applied for on-street parking space sensing,aiming at providing timely and accurate information for drivers and improving daily travel convenience.However,it faces great...Vision-based technologies have been extensively applied for on-street parking space sensing,aiming at providing timely and accurate information for drivers and improving daily travel convenience.However,it faces great challenges as a partial visualization regularly occurs owing to occlusion from static or dynamic objects or a limited perspective of camera.This paper presents an imagery-based framework to infer parking space status by generating 3D bounding box of the vehicle.A specially designed convolutional neural network based on ResNet and feature pyramid network is proposed to overcome challenges from partial visualization and occlusion.It predicts 3D box candidates on multi-scale feature maps with five different 3D anchors,which generated by clustering diverse scales of ground truth box according to different vehicle templates in the source data set.Subsequently,vehicle distribution map is constructed jointly from the coordinates of vehicle box and artificially segmented parking spaces,where the normative degree of parked vehicle is calculated by computing the intersection over union between vehicle’s box and parking space edge.In space status inference,to further eliminate mutual vehicle interference,three adjacent spaces are combined into one unit and then a multinomial logistic regression model is trained to refine the status of the unit.Experiments on KITTI benchmark and Shanghai road show that the proposed method outperforms most monocular approaches in 3D box regression and achieves satisfactory accuracy in space status inference.展开更多
Acoustic/ultrasonic sensors are devices that can convert mechanical energy into electrical signals.The Fabry–Perot cavity is processed on the end face of the double-clad fiber by a two-photon three-dimensional lithog...Acoustic/ultrasonic sensors are devices that can convert mechanical energy into electrical signals.The Fabry–Perot cavity is processed on the end face of the double-clad fiber by a two-photon three-dimensional lithography machine.In this study,the outer diameter of the core cladding was 250μm,the diameter of the core was 9μm,and the microcavity sensing unit was only 30μm.It could measure ultrasonic signals with high precision.The characteristics of the proposed ultrasonic sensor were investigated,and its feasibility was proven through experiments.Its design has a small size and can replace a larger ultrasonic detector device for photoacoustic signal detection.The sensor is applicable to the field of biomedical information technology,including medical diagnosis,photoacoustic endoscopy,and photoacoustic imaging.展开更多
In this paper, a collection of three-dimensional(3D)numerical breast models are developed based on clinical magnetic resonance images(MRIs). A hybrid contour detection method is used to create the contour, and the int...In this paper, a collection of three-dimensional(3D)numerical breast models are developed based on clinical magnetic resonance images(MRIs). A hybrid contour detection method is used to create the contour, and the internal space is filled with different breast tissues, with each corresponding to a specified interval of MRI pixel intensity. The developed models anatomically describe the complex tissue structure and dielectric properties in breasts. Besides, they are compatible with finite-difference-time-domain(FDTD)grid cells. Convolutional perfect matched layer(CPML)is applied in conjunction with FDTD to simulate the open boundary outside the model. In the test phase, microwave breast cancer detection simulations are performed in four models with varying radiographic densities. Then, confocal algorithm is utilized to reconstruct the tumor images. Imaging results show that the tumor voxels can be recognized in every case, with 2 mm location error in two low density cases and 7 mm─8 mm location errors in two high density cases, demonstrating that the MRI-derived models can characterize the individual difference between patients' breasts.展开更多
Visual attention mechanisms allow humans to extract relevant and important information from raw input percepts. Many applications in robotics and computer vision have modeled human visual attention mechanisms using a ...Visual attention mechanisms allow humans to extract relevant and important information from raw input percepts. Many applications in robotics and computer vision have modeled human visual attention mechanisms using a bottom-up data centric approach. In contrast, recent studies in cognitive science highlight advantages of a top-down approach to the attention mechanisms, especially in applications involving goal-directed search. In this paper, we propose a top-down approach for extracting salient objects/regions of space. The top-down methodology first isolates different objects in an unorganized point cloud, and compares each object for uniqueness. A measure of saliency using the properties of geodesic distance on the object’s surface is defined. Our method works on 3D point cloud data, and identifies salient objects of high curvature and unique silhouette. These being the most unique features of a scene, are robust to clutter, occlusions and view point changes. We provide the details of the proposed method and initial experimental results.展开更多
A wavelength-dependent three-dimensional(3D)superlocalization imaging method on gold nanoislands(GNIs)chip was developed as a supersensitive single-molecule thyroid-stimulating hormone(TSH)nanobiosensor.Scattered and ...A wavelength-dependent three-dimensional(3D)superlocalization imaging method on gold nanoislands(GNIs)chip was developed as a supersensitive single-molecule thyroid-stimulating hormone(TSH)nanobiosensor.Scattered and fluorescent signals from gold nanoislands on the substrate and quantum dots(QDs)nanoprobes were simultaneously isolated and acquired within an evanescent field layer generated by total internal reflection(TIR)of incident light using a dual-view device.The 3D TIR fluorescence images of TSH-bound QDs on the GNIs were obtained using z-axis optical sectioning at 10nm intervals before/after immunoreaction to identify the optimal conditions for detection.The localized centroid position of QD nanoprobes and GNI were distinguished at a subdiffraction limit resolution using 3D Gaussian fitting to the point spread function.The QD TSH nanobiosensor using wavelength-dependent 3D TIR fluorescence-based single-molecule localization microscopy(3D TIRF-SLM)imaging technique showed an excellent detection limit of 90 yoctomoles(~54 molecules)and a wide linear dynamic range of 1.14 zmol/L-100 pmol/L for TSH.The detection sensitivity was about 4.4×10^(9)times higher than conventional enzyme-linked immunosorbent assay and could successfully quantify TSH in human serum.The wavelength-dependent 3D TIRF-SLM technique may emerge as a reliable platform for ultrahigh-sensitive nanobiosensors at the single-molecule level and early diagnosis with quantification of disease-related ultra-tracebiomolecules.展开更多
A 3D forest monitoring system,called FORSAT(a satellite very high resolution image processing platform for forest assessment),was developed for the extraction of 3D geometric forest information from very high resoluti...A 3D forest monitoring system,called FORSAT(a satellite very high resolution image processing platform for forest assessment),was developed for the extraction of 3D geometric forest information from very high resolution(VHR)satellite imagery and the automatic 3D change detection.FORSAT is composed of two complementary tasks:(1)the geometric and radiometric processing of satellite optical imagery and digital surface model(DSM)reconstruction by using a precise and robust image matching approach specially designed for VHR satellite imagery,(2)3D surface comparison for change detection.It allows the users to import DSMs,align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes(together with precision values)between epochs.FORSAT is a single source and flexible forest information solution,allowing expert and non-expert remote sensing users to monitor forests in three and four(time)dimensions.The geometric resolution and thematic content of VHR optical imagery are sufficient for many forest information needs such as deforestation,clear-cut and fire severity mapping.The capacity and benefits of FORSAT,as a forest information system contributing to the sustainable forest management,have been tested and validated in case studies located in Austria,Switzerland and Spain.展开更多
基金Project(50490274) supported by the National Natural Science Foundation of China
文摘Ground constructions and mines are severely threatened by ones. Safe and precise cavity detection is vital for reasonable cavity underground cavities especially those unsafe or inaccessible evaluation and disposal. The conventional cavity detection methods and their limitation were analyzed. Those methods cannot form 3D model of underground cavity which is used for instructing the cavity disposal; and their precisions in detection are always greatly affected by the geological circumstance. The importance of 3D cavity detection in metal mine for safe exploitation was pointed out; and the 3D cavity laser detection method and its principle were introduced. A cavity auto scanning laser system was recommended to actualize the cavity 3D detection after comparing with the other laser detection systems. Four boreholes were chosen to verify the validity of the cavity auto scanning laser system. The results show that the cavity auto scanning laser system is very suitable for underground 3D cavity detection, especially for those inaccessible ones.
基金National Natural Science Foundation of China(Nos.41861054,41371423,61966010)National Key R&D Program of China(No.2016YFB0502105)。
文摘Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3D laser scanning technology to mountain mapping,the conventional mathematical cloud-based point cloud hole repair method is not ideal in practical applications.In order to solve this problem,we propose to repair the valley and ridge line first,and then repair the point cloud hole.The main technical steps of the method include the following points:First,the valley and ridge feature lines are extracted by the GIS slope analysis method;Then,the valley and ridge line missing from the hole are repaired by the mathematical interpolation method,and the repaired results are edited and inserted to the original point cloud;Finally,the traditional repair method is used to repair the point cloud hole whose valley line and ridge line have been repaired.Three experiments were designed and implemented in the east bank of the Xiaobaini River to test the performance of the proposed method.The results showed that compared with the direct point cloud hole repair method in Geomagic Studio software,the average repair accuracy of the proposed method,in the 16 m buffer zone of valley line and ridge line,is increased from 56.31 cm to 31.49 cm.The repair performance is significantly improved.
基金supported by The National Key Research and Development Program of China (2021YFC3090304)The Fundamental Research Funds for the Central Universities,China University of Mining and Technology-Beijing (8000150A073).
文摘3D ground-penetrating radar has been widely used in urban road underground disease detection due to its nondestructive,efficient,and intuitive results.However,the 3D imaging of the underground target body presents the edge plate phenomenon due to the space between the 3D radar array antennas.Consequently,direct 3D imaging using detection results cannot reflect underground spatial distribution characteristics.Due to the wide-beam polarization of the ground-penetrating radar antenna,the emission of electromagnetic waves with a specific width decreases the strong middle energy on both sides gradually.Therefore,a bicubic high-precision 3D target body slice-imaging fitting algorithm with changing trend characteristics is constructed by combining the subsurface target characteristics with the changing spatial morphology trends.Using the wide-angle polarization antenna’s characteristics in the algorithm to build the trend factor between the measurement lines,the target body change trend and the edge detail portrayal achieve a 3D ground-penetrating radar-detection target high-precision fitting.Compared with other traditional fitting techniques,the fitting error is small.This paper conducts experiments and analyses on GpaMax 3D forward modeling and 3D ground-penetrating measured radar data.The experiments show that the improved bicubic fitting algorithm can eff ectively improve the accuracy of underground target slice imaging and the 3D ground-penetrating radar’s anomaly interpretation.
文摘Holoscopic 3D imaging is a true 3D imaging system mimics fly’s eye technique to acquire a true 3D optical model of a real scene. To reconstruct the 3D image computationally, an efficient implementation of an Auto-Feature-Edge (AFE) descriptor algorithm is required that provides an individual feature detector for integration of 3D information to locate objects in the scene. The AFE descriptor plays a key role in simplifying the detection of both edge-based and region-based objects. The detector is based on a Multi-Quantize Adaptive Local Histogram Analysis (MQALHA) algorithm. This is distinctive for each Feature-Edge (FE) block i.e. the large contrast changes (gradients) in FE are easier to localise. The novelty of this work lies in generating a free-noise 3D-Map (3DM) according to a correlation analysis of region contours. This automatically combines the exploitation of the available depth estimation technique with edge-based feature shape recognition technique. The application area consists of two varied domains, which prove the efficiency and robustness of the approach: a) extracting a set of setting feature-edges, for both tracking and mapping process for 3D depthmap estimation, and b) separation and recognition of focus objects in the scene. Experimental results show that the proposed 3DM technique is performed efficiently compared to the state-of-the-art algorithms.
基金supported by the National "Eleventh Five-Year" Forestry Support Program of China (No2006BAD03A1603)
文摘An ILRIS-36D 3-D laser image scanning system was used to monitor the Anjialing strip mine slope on Pingshuo in Shanxi province. The basic working principles, performance indexes, features and data collection and processing methods are illus-trated. The point cloud results are analyzed in detail. The rescale range analysis method was used to analyze the deformation char-acteristics of the slope. The results show that the trend of slope displacement is stable and that the degree of landslide danger is low. This work indicates that 3-D laser image scanning can supply multi-parameter, high precision real time data over long distances. These data can be used to study the distortion of the slope quickly and accurately.
基金sponsored by Study on High-Precision Logging While Drilling Imaging Technology of Low-Permeability Reservoirs(No.2016ZX05021-002)
文摘A new multi-mode resistivity imaging sonde, with toroidal coils as source, can conduct three resistivity measurements: azimuthal resistivity, lateral resistivity, and bit resistivity measurements. Thus, the logging time and cost are greatly saved. The toroidal coils are simplified as an extended voltage dipole and the response equations are derived for a homogenous formation. Based on 3D FEM, the depth of investigation(DOI), vertical resolution, circumferential azimuthal capacity, borehole diameter, mud resistivity, thickness of target formation, and the resistivity of the surrounding formation and mud invasion are simulated. The results suggest that the three measurement modes of the new sonde are different in vertical resolutions and DOIs. The circumferential detection ability of the azimuth button depends on the contrast between the anomaly and formation resistivity and the open angle of the anomaly. Whether the borehole is truncated at the bit or not has a great influence on the simulation results. The borehole and mud invasion affect the apparent resistivity in all modes, but the effects of resistivity of surrounding formation and thickness of the target formation are only corrected for lateral resistivity measurement.
基金The authors gratefully acknowledge funding by the Erlangen Graduate School in Advanced Optical Technologies(SAOT)and by the German Research Foundation(DFG)in the framework of a German excellence initiative.We also thankfully acknowledge the GPU seeding grant for researchers by Nvidia Corp.
文摘Within this work,we present a system for the measurement of the three-dimensional(3D)trajectories of spatters and entrained particles during laser powder bed fusion(L-PBF)of metals.It is comprised of two ultrahigh-speed cameras and a reconstruction task specific processing reconstruction algorithm.The system enables an automated determination of 3D measures from the trajectories of a large number of tracked particles.Ambiguity evolving from an underdetermined geometrical situation induced by a two-camera setup is resolved within the tracking using a priori knowledge of L-PBF of metals.All processing steps were optimized to run on a graphics processing unit to allow the processing of large amounts of data within an appropriate time frame.The overall approach was validated by a comparison of the measurement results to synthetic images with a known 3D ground truth.
基金supported by the Natural Science Foundation of Fujian Province(No.2021J01321)the State Key Laboratory of Integrated Optoelectronics(No.IOSKL2020KF25)。
文摘We propose a laser speckle contrast imaging method based on uniting spatiotemporal Fourier transform.First,the raw speckle images are entirely transformed to the spatiotemporal frequency domain with a three-dimensional(3D)fast Fourier transform.Second,the dynamic and static speckle components are extracted by applying 3D low-pass and high-pass filtering in the spatiotemporal frequency domain and inverse 3D Fourier transform.Third,we calculate the time-averaged modulation depth with the average of both components to map the two-dimensional blood flow distribution.The experiments demonstrate that the proposed method could effectively improve computational efficiency and imaging quality.
基金This work was supported in part by National Natural Science Foundation of China(No.51805312)in part by Shanghai Sailing Program(No.18YF1409400)+2 种基金in part by Training and Funding Program of Shanghai College young teachers(No.ZZGCD15102)in part by Scientific Research Project of Shanghai University of Engineering Science(No.2016-19)in part by the Shanghai University of Engineering Science Innovation Fund for Graduate Students(No.18KY0613).
文摘Vision-based technologies have been extensively applied for on-street parking space sensing,aiming at providing timely and accurate information for drivers and improving daily travel convenience.However,it faces great challenges as a partial visualization regularly occurs owing to occlusion from static or dynamic objects or a limited perspective of camera.This paper presents an imagery-based framework to infer parking space status by generating 3D bounding box of the vehicle.A specially designed convolutional neural network based on ResNet and feature pyramid network is proposed to overcome challenges from partial visualization and occlusion.It predicts 3D box candidates on multi-scale feature maps with five different 3D anchors,which generated by clustering diverse scales of ground truth box according to different vehicle templates in the source data set.Subsequently,vehicle distribution map is constructed jointly from the coordinates of vehicle box and artificially segmented parking spaces,where the normative degree of parked vehicle is calculated by computing the intersection over union between vehicle’s box and parking space edge.In space status inference,to further eliminate mutual vehicle interference,three adjacent spaces are combined into one unit and then a multinomial logistic regression model is trained to refine the status of the unit.Experiments on KITTI benchmark and Shanghai road show that the proposed method outperforms most monocular approaches in 3D box regression and achieves satisfactory accuracy in space status inference.
基金This work was supported in part by the Natural Science Foundation of Guangdong Province,No.2020A1515010958Key Project of Shenzhen Science and Technology Plan,No.JCYJ20200109113808048.
文摘Acoustic/ultrasonic sensors are devices that can convert mechanical energy into electrical signals.The Fabry–Perot cavity is processed on the end face of the double-clad fiber by a two-photon three-dimensional lithography machine.In this study,the outer diameter of the core cladding was 250μm,the diameter of the core was 9μm,and the microcavity sensing unit was only 30μm.It could measure ultrasonic signals with high precision.The characteristics of the proposed ultrasonic sensor were investigated,and its feasibility was proven through experiments.Its design has a small size and can replace a larger ultrasonic detector device for photoacoustic signal detection.The sensor is applicable to the field of biomedical information technology,including medical diagnosis,photoacoustic endoscopy,and photoacoustic imaging.
基金Supported by the National Natural Science Foundation of China(No.61271323)
文摘In this paper, a collection of three-dimensional(3D)numerical breast models are developed based on clinical magnetic resonance images(MRIs). A hybrid contour detection method is used to create the contour, and the internal space is filled with different breast tissues, with each corresponding to a specified interval of MRI pixel intensity. The developed models anatomically describe the complex tissue structure and dielectric properties in breasts. Besides, they are compatible with finite-difference-time-domain(FDTD)grid cells. Convolutional perfect matched layer(CPML)is applied in conjunction with FDTD to simulate the open boundary outside the model. In the test phase, microwave breast cancer detection simulations are performed in four models with varying radiographic densities. Then, confocal algorithm is utilized to reconstruct the tumor images. Imaging results show that the tumor voxels can be recognized in every case, with 2 mm location error in two low density cases and 7 mm─8 mm location errors in two high density cases, demonstrating that the MRI-derived models can characterize the individual difference between patients' breasts.
文摘Visual attention mechanisms allow humans to extract relevant and important information from raw input percepts. Many applications in robotics and computer vision have modeled human visual attention mechanisms using a bottom-up data centric approach. In contrast, recent studies in cognitive science highlight advantages of a top-down approach to the attention mechanisms, especially in applications involving goal-directed search. In this paper, we propose a top-down approach for extracting salient objects/regions of space. The top-down methodology first isolates different objects in an unorganized point cloud, and compares each object for uniqueness. A measure of saliency using the properties of geodesic distance on the object’s surface is defined. Our method works on 3D point cloud data, and identifies salient objects of high curvature and unique silhouette. These being the most unique features of a scene, are robust to clutter, occlusions and view point changes. We provide the details of the proposed method and initial experimental results.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Nos.2019R1A2C2002556 and 2020R1C1C1009668)supported by Nano-Material Technology Development Program through the NRF funded by the Ministry of Science,ICT and Future Planning(No.2009-0082580).
文摘A wavelength-dependent three-dimensional(3D)superlocalization imaging method on gold nanoislands(GNIs)chip was developed as a supersensitive single-molecule thyroid-stimulating hormone(TSH)nanobiosensor.Scattered and fluorescent signals from gold nanoislands on the substrate and quantum dots(QDs)nanoprobes were simultaneously isolated and acquired within an evanescent field layer generated by total internal reflection(TIR)of incident light using a dual-view device.The 3D TIR fluorescence images of TSH-bound QDs on the GNIs were obtained using z-axis optical sectioning at 10nm intervals before/after immunoreaction to identify the optimal conditions for detection.The localized centroid position of QD nanoprobes and GNI were distinguished at a subdiffraction limit resolution using 3D Gaussian fitting to the point spread function.The QD TSH nanobiosensor using wavelength-dependent 3D TIR fluorescence-based single-molecule localization microscopy(3D TIRF-SLM)imaging technique showed an excellent detection limit of 90 yoctomoles(~54 molecules)and a wide linear dynamic range of 1.14 zmol/L-100 pmol/L for TSH.The detection sensitivity was about 4.4×10^(9)times higher than conventional enzyme-linked immunosorbent assay and could successfully quantify TSH in human serum.The wavelength-dependent 3D TIRF-SLM technique may emerge as a reliable platform for ultrahigh-sensitive nanobiosensors at the single-molecule level and early diagnosis with quantification of disease-related ultra-tracebiomolecules.
基金the EUROSTARS[grant number E!7358]funding scheme,co-funded by the European Commission and the participating countries.
文摘A 3D forest monitoring system,called FORSAT(a satellite very high resolution image processing platform for forest assessment),was developed for the extraction of 3D geometric forest information from very high resolution(VHR)satellite imagery and the automatic 3D change detection.FORSAT is composed of two complementary tasks:(1)the geometric and radiometric processing of satellite optical imagery and digital surface model(DSM)reconstruction by using a precise and robust image matching approach specially designed for VHR satellite imagery,(2)3D surface comparison for change detection.It allows the users to import DSMs,align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes(together with precision values)between epochs.FORSAT is a single source and flexible forest information solution,allowing expert and non-expert remote sensing users to monitor forests in three and four(time)dimensions.The geometric resolution and thematic content of VHR optical imagery are sufficient for many forest information needs such as deforestation,clear-cut and fire severity mapping.The capacity and benefits of FORSAT,as a forest information system contributing to the sustainable forest management,have been tested and validated in case studies located in Austria,Switzerland and Spain.