Research on the range anomaly suppression algorithm in laser radar (ladar) range images is significant in the application and development of ladar. But most of existing algorithms cannot protect the edge and linear ...Research on the range anomaly suppression algorithm in laser radar (ladar) range images is significant in the application and development of ladar. But most of existing algorithms cannot protect the edge and linear target well while suppressing the range anomaly. Aiming at this problem, the differences among the edge, linear target, and range anomaly are analyzed and a novel algo- rithm based on neighborhood pixels detection is proposed. Firstly, the range differences between current pixel and its neighborhood pixels are calculated. Then, the number of neighborhood pixels is detected by the range difference threshold. Finally, whether the current pixel is a range anomaly is distinguished by the neighbor- hood pixel number threshold. Experimental results show that the new algorithm not only has a better range anomaly suppression performance and higher efficiency, but also protects the edge and linear target preferably compared with other algorithms.展开更多
Background: The distribution of forest vegetation within urban environments is critically important as it influences urban environmental conditions and the energy exchange through the absorption of solar radiation and...Background: The distribution of forest vegetation within urban environments is critically important as it influences urban environmental conditions and the energy exchange through the absorption of solar radiation and modulation of evapotranspiration. It also plays an important role filtering urban water systems and reducing storm water runoff.Methods: We investigate the capacity of ALS data to individually detect, map and characterize large(taller than15 m) trees within the City of Vancouver. Large trees are critical for the function and character of Vancouver’s urban forest. We used an object-based approach for individual tree detection and segmentation to determine tree locations(position of the stem), to delineate the shape of the crowns and to categorize the latter either as coniferous or deciduous.Results: Results indicate a detection rate of 76.6% for trees > 15 m with a positioning error of 2.11 m(stem location). Extracted tree heights possessed a RMSE of 2.60 m and a bias of-1.87 m, whereas crown diameter was derived with a RMSE of 3.85 m and a bias of-2.06 m. Missed trees are principally a result of undetected treetops occurring in dense, overlapping canopies with more accurate detection and delineation of trees in open areas.Conclusion: By identifying key structural trees across Vancouver’s urban forests, we can better understand their role in providing ecosystem goods and services for city residents.展开更多
文摘Research on the range anomaly suppression algorithm in laser radar (ladar) range images is significant in the application and development of ladar. But most of existing algorithms cannot protect the edge and linear target well while suppressing the range anomaly. Aiming at this problem, the differences among the edge, linear target, and range anomaly are analyzed and a novel algo- rithm based on neighborhood pixels detection is proposed. Firstly, the range differences between current pixel and its neighborhood pixels are calculated. Then, the number of neighborhood pixels is detected by the range difference threshold. Finally, whether the current pixel is a range anomaly is distinguished by the neighbor- hood pixel number threshold. Experimental results show that the new algorithm not only has a better range anomaly suppression performance and higher efficiency, but also protects the edge and linear target preferably compared with other algorithms.
文摘Background: The distribution of forest vegetation within urban environments is critically important as it influences urban environmental conditions and the energy exchange through the absorption of solar radiation and modulation of evapotranspiration. It also plays an important role filtering urban water systems and reducing storm water runoff.Methods: We investigate the capacity of ALS data to individually detect, map and characterize large(taller than15 m) trees within the City of Vancouver. Large trees are critical for the function and character of Vancouver’s urban forest. We used an object-based approach for individual tree detection and segmentation to determine tree locations(position of the stem), to delineate the shape of the crowns and to categorize the latter either as coniferous or deciduous.Results: Results indicate a detection rate of 76.6% for trees > 15 m with a positioning error of 2.11 m(stem location). Extracted tree heights possessed a RMSE of 2.60 m and a bias of-1.87 m, whereas crown diameter was derived with a RMSE of 3.85 m and a bias of-2.06 m. Missed trees are principally a result of undetected treetops occurring in dense, overlapping canopies with more accurate detection and delineation of trees in open areas.Conclusion: By identifying key structural trees across Vancouver’s urban forests, we can better understand their role in providing ecosystem goods and services for city residents.