To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is perf...To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM "footprint" concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical.展开更多
In this study, Ten Time Domain Electromagnetic (TDEM) measuring points have been conducted at four pre-selected sites along Wadi Deir Al-Kahaf in order to investigate the potential of the near subsurface deposits and ...In this study, Ten Time Domain Electromagnetic (TDEM) measuring points have been conducted at four pre-selected sites along Wadi Deir Al-Kahaf in order to investigate the potential of the near subsurface deposits and aquifer for groundwater artificial recharge applications. The surveyed results suggest well resolved geological layers such as alluvial mudflat, basalt layers and their saturation states. In addition a hydrogeophysical cross section along the studied sites was constructed which permits to locate the lateral variations in rock properties due to water saturation and or facies changes. The saturated thickness of the Upper Aquifer System in the study area was found to be changed from 5 m near TEM 1 to about 120 m near TEM 4 in thickness. The Abed Basalt Aquifer (AOB) has an average saturation thickness of about ~60 m, and forming the main aquifer (~100 m thickness) near surface to the north of the study area. TEM-3 and TEM-4 sites were found to be potential sites for groundwater artificial recharge based on the constructed hydro-geophysical model. This study recommends implementing detailed geophysical investigations particularly in the most northern parts of the study area.展开更多
In the present paper we consider the case of a Dirac field in a finite time domain and coupled to an external field. We decompose the field and its Hamiltonian in terms of creation and annihilation operators and path ...In the present paper we consider the case of a Dirac field in a finite time domain and coupled to an external field. We decompose the field and its Hamiltonian in terms of creation and annihilation operators and path integrate it via Grassmannian variables techniques. In that way we obtain its finite time domain Green function. We use it in the perturbative study of the interaction of Dirac particles with classical electromagnetic waves.展开更多
The time-frequency domain electromagnetic(TFEM)sounding technique can directly detect oil and gas characteristics through anomalies in resistivity and polarizability.In recent years,it has made some breakthroughs in h...The time-frequency domain electromagnetic(TFEM)sounding technique can directly detect oil and gas characteristics through anomalies in resistivity and polarizability.In recent years,it has made some breakthroughs in hydrocarbon detection.TFEM was applied to predict the petroliferous property of the Ili Basin.In accordance with the geological structure characteristics of the study area,a two-dimensional layered medium model was constructed and forward modeling was performed.We used the forward-modeling results to guide fi eld construction and ensure the quality of the fi eld data collection.We used the model inversion results to identify and distinguish the resolution of the geoelectric information and provide a reliable basis for data processing.On the basis of our results,key technologies such as 2D resistivity tomography imaging inversion and polarimetric constrained inversion were developed,and we obtained abundant geological and geophysical information.The characteristics of the TFEM anomalies of the hydrocarbon reservoirs in the Ili Basin were summarized through an analysis of the electrical logging data in the study area.Moreover,the oil-gas properties of the Permian and Triassic layers were predicted,and the next favorable exploration targets were optimized.展开更多
Rectangular reflector antennas have motivated the time-domain analysis of electromagnetic scattering problems. The asymptotic time domain physical-optics (TDPO) is applied to the analysis of a rectangular reflector il...Rectangular reflector antennas have motivated the time-domain analysis of electromagnetic scattering problems. The asymptotic time domain physical-optics (TDPO) is applied to the analysis of a rectangular reflector illuminated by a Gaussian-impulse. The effects of time-delayed mutual coupling between points on the surface will be ignored as a result of utilizing the TDPO method for determining the equivalent surface-current density on the reflector. Finally, in this work the scattered signals at the specular reflection point, at the edges, and at the corners can be clearly distinguished.展开更多
针对架空配电线路电弧接地故障点定位难题,该文研究架空配电线路故障电弧的电磁辐射特性,探索基于电磁辐射信号的电弧故障定位方法的可行性。通过10 k V配网真型故障模拟试验平台,分析接地电弧电磁辐射的时域与频域特性及传播衰减规律,...针对架空配电线路电弧接地故障点定位难题,该文研究架空配电线路故障电弧的电磁辐射特性,探索基于电磁辐射信号的电弧故障定位方法的可行性。通过10 k V配网真型故障模拟试验平台,分析接地电弧电磁辐射的时域与频域特性及传播衰减规律,结果表明:电弧电流的电磁辐射特征频段为20~30 MHz,该特征频段不会受到中性点接地方式、电弧接地介质与线路结构参数的显著影响,且特征频段内辐射信号在传播过程中衰减较慢。在此基础上,设计一种小型化三角形单极子–环形组合平面天线,工作频率为20~500 MHz。利用自制天线开展小型电弧故障定位实验,为后续配网电弧故障定位的应用研究提供基础。展开更多
A hybrid method combining finite difference time domain(FDTD)with topology network was presented to treat with electromagnetic couplings and transmissions in large spaces A generalized matrix euqation expressing th...A hybrid method combining finite difference time domain(FDTD)with topology network was presented to treat with electromagnetic couplings and transmissions in large spaces A generalized matrix euqation expressing the relations among wave vectors at every port of the network nodes was give Scattering characteristics and electromagnetic distributions of every node was calculated independently using FDTD A structure of irises in a waveguide was taken as numerical examples This hybrid method has more advantages than the traditional FDTD method which includes saving calculation time,saving memory spaces and being flexible in setting up FDTD grids展开更多
基金supported by the Key Natural Science Foundation(No.41530320)Natural Science Foundation(No.41274121)+1 种基金Natural Science Foundation for young scientist(No.41404093)the Projects on the Development of the Key Equipment of Chinese Academy of Science(No.ZDYZ2012-1-03)
文摘To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM "footprint" concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical.
文摘In this study, Ten Time Domain Electromagnetic (TDEM) measuring points have been conducted at four pre-selected sites along Wadi Deir Al-Kahaf in order to investigate the potential of the near subsurface deposits and aquifer for groundwater artificial recharge applications. The surveyed results suggest well resolved geological layers such as alluvial mudflat, basalt layers and their saturation states. In addition a hydrogeophysical cross section along the studied sites was constructed which permits to locate the lateral variations in rock properties due to water saturation and or facies changes. The saturated thickness of the Upper Aquifer System in the study area was found to be changed from 5 m near TEM 1 to about 120 m near TEM 4 in thickness. The Abed Basalt Aquifer (AOB) has an average saturation thickness of about ~60 m, and forming the main aquifer (~100 m thickness) near surface to the north of the study area. TEM-3 and TEM-4 sites were found to be potential sites for groundwater artificial recharge based on the constructed hydro-geophysical model. This study recommends implementing detailed geophysical investigations particularly in the most northern parts of the study area.
文摘In the present paper we consider the case of a Dirac field in a finite time domain and coupled to an external field. We decompose the field and its Hamiltonian in terms of creation and annihilation operators and path integrate it via Grassmannian variables techniques. In that way we obtain its finite time domain Green function. We use it in the perturbative study of the interaction of Dirac particles with classical electromagnetic waves.
基金This work was supported by the Geology and Mineral Resources Investigation and Evaluation Program(No.12120115006601 and No.DD20160181)the National key Research and Development projects(No.2016YFC060110204 and No.2016YFC060110305).
文摘The time-frequency domain electromagnetic(TFEM)sounding technique can directly detect oil and gas characteristics through anomalies in resistivity and polarizability.In recent years,it has made some breakthroughs in hydrocarbon detection.TFEM was applied to predict the petroliferous property of the Ili Basin.In accordance with the geological structure characteristics of the study area,a two-dimensional layered medium model was constructed and forward modeling was performed.We used the forward-modeling results to guide fi eld construction and ensure the quality of the fi eld data collection.We used the model inversion results to identify and distinguish the resolution of the geoelectric information and provide a reliable basis for data processing.On the basis of our results,key technologies such as 2D resistivity tomography imaging inversion and polarimetric constrained inversion were developed,and we obtained abundant geological and geophysical information.The characteristics of the TFEM anomalies of the hydrocarbon reservoirs in the Ili Basin were summarized through an analysis of the electrical logging data in the study area.Moreover,the oil-gas properties of the Permian and Triassic layers were predicted,and the next favorable exploration targets were optimized.
文摘Rectangular reflector antennas have motivated the time-domain analysis of electromagnetic scattering problems. The asymptotic time domain physical-optics (TDPO) is applied to the analysis of a rectangular reflector illuminated by a Gaussian-impulse. The effects of time-delayed mutual coupling between points on the surface will be ignored as a result of utilizing the TDPO method for determining the equivalent surface-current density on the reflector. Finally, in this work the scattered signals at the specular reflection point, at the edges, and at the corners can be clearly distinguished.
文摘针对架空配电线路电弧接地故障点定位难题,该文研究架空配电线路故障电弧的电磁辐射特性,探索基于电磁辐射信号的电弧故障定位方法的可行性。通过10 k V配网真型故障模拟试验平台,分析接地电弧电磁辐射的时域与频域特性及传播衰减规律,结果表明:电弧电流的电磁辐射特征频段为20~30 MHz,该特征频段不会受到中性点接地方式、电弧接地介质与线路结构参数的显著影响,且特征频段内辐射信号在传播过程中衰减较慢。在此基础上,设计一种小型化三角形单极子–环形组合平面天线,工作频率为20~500 MHz。利用自制天线开展小型电弧故障定位实验,为后续配网电弧故障定位的应用研究提供基础。
文摘A hybrid method combining finite difference time domain(FDTD)with topology network was presented to treat with electromagnetic couplings and transmissions in large spaces A generalized matrix euqation expressing the relations among wave vectors at every port of the network nodes was give Scattering characteristics and electromagnetic distributions of every node was calculated independently using FDTD A structure of irises in a waveguide was taken as numerical examples This hybrid method has more advantages than the traditional FDTD method which includes saving calculation time,saving memory spaces and being flexible in setting up FDTD grids