Research on practical and verifiable prediction methods for the service life of bearings plays a critical role in improving the reliability and safety of aircraft engines. The concept of grade-life (GL) is introduce...Research on practical and verifiable prediction methods for the service life of bearings plays a critical role in improving the reliability and safety of aircraft engines. The concept of grade-life (GL) is introduced to de- scribe the service life of bearings. A GL prognostic model for aircraft engine bearings is proposed based on sup- port vector machine (SVM) and fuzzy logic inference. Firstly, the mathematical model is discussed to predict the physics-based GL (PGL). Then, the diagnostic estimation model based on SVM is presented in detail to predict the empirical GL (EPL). Thirdly, a fuzzy logic inference is adopted to fuse two GL predicted results. Finally, the GL prognostic model is verified by the run-to-failure data acquired from an accelerated life test of an aircraft bearing. The results show that the model provides a more practical and reliable prediction for the service life of bearings.展开更多
A new surface strengthening technology, luster polish strengthening treatment, was proposed to treat the raceway surface of aeroengine bearings (9Cr18Mo) with the centrifugal strengthening machine exclusively design...A new surface strengthening technology, luster polish strengthening treatment, was proposed to treat the raceway surface of aeroengine bearings (9Cr18Mo) with the centrifugal strengthening machine exclusively designed for luster polish strengthening treatment. The experimental results showed that luster polish strengthening treatment produced a compressive residual stress layer with a depth of over 80 μm below the surface of the bearing raceway, and thus effectively removed the metamorphic layer in the raceway surface. After luster polish strengthening treatment, the average surface hardness of the aeroengine bearing raceway was increased from 61.02 HRC to 63.01 HRC, the surface roughness was reduced from 0.06 μm to 0.03 μm, and the contact fatigue life of the aeroengine bearings was improved by about 90%, with the dispersion of fatigue life being reduced remarkably. Theoretical calculation result agrees with that obtained by experiment.展开更多
航空发动机结构与系统的复杂性导致轴承的故障诊断方法通常面临特征提取与模式识别的困难。针对以上不足,考虑实际工程诊断的实时性与准确性,提出了一种新的基于转子位移概率密度信息(probability density information of rotor displac...航空发动机结构与系统的复杂性导致轴承的故障诊断方法通常面临特征提取与模式识别的困难。针对以上不足,考虑实际工程诊断的实时性与准确性,提出了一种新的基于转子位移概率密度信息(probability density information of rotor displacement,PIRD)的航空发动机轴承智能故障诊断方法。其主要对一维卷积神经网络(1-dimensional convolutional neural network,1DCNN)模型进行改进,在传统的卷积层前面增加了PIRD的提取层,可以提取转子振动位移信号的概率密度信息,有效地降低了数据的冗余度,同时保留了故障监测的重要指标。提出的PIRD-CNN诊断模型保留了1DCNN端到端的故障诊断优势,将该模型在航空发动机试验台产生的轴承故障数据进行测试,其对轴承故障诊断精度可达96.58%,与基准研究相对比表明,PIRD-CNN能够快速且更加精准地诊断航空发动机轴承的故障。展开更多
The worldwide air traffic underwent a rapid development in recent decades.?Between the early 70s and the late 90s of the last century civil air traffic?doubled every 15 years. The civil aviation market will continue t...The worldwide air traffic underwent a rapid development in recent decades.?Between the early 70s and the late 90s of the last century civil air traffic?doubled every 15 years. The civil aviation market will continue to grow with 4% - 5%?each year within the next 20 years. This enormous growth represents major?challenges for airframers, engine makers, suppliers, airlines, air traffic management?and ground infrastructure. In addition, the public debate on the worldwide?civil air traffic is dominated by environmental and climate issues, even though only 2% of the man-made carbon dioxide (CO2) emissions are due to air transportation. Therefore the aerospace industry will have to focus on a low-emission and quite air traffic, and on the conservation of natural resources and our environment. The end-use consumer and environmental policy requirements?for aircrafts of the next generation translate into components with improved efficiency and reliability. Rolling bearings are one of these components which?significantly determine the reliability and mechanical efficiency of aerospace applications such as aircraft and rotorcraft engines and transmission systems.?They have to withstand very demanding operating conditions. Especially main shaft?bearings in modern aircraft engines experience high rotational speeds andtemperatures. Furthermore aerospace bearings have to meet the highest reliability?standards and require low-weight design solutions. These operating conditions?and requirements present a continuous challenge for improvements in all?fields of bearing technology. This article presents solutions in aspects of materials, design, analysis, and surface technologies in order to meet the environmental, reliability, and economical requirements of advanced aerospace bearing systems. State of the art bearing analysis and advanced bearing design solutions?contributing to lower friction power losses and increased systems efficiency?are discussed. Weight, functional, and maintenance benefits are presented with the example of highly integrated aircraft engine main shaft bearings. It is also shown that the progress in bearing materials and surface technology development is the basis for weight and friction energy reduction in aerospace?bearing systems.展开更多
基金Supported by the China Postdoctoral Science Foundation(20100481500)~~
文摘Research on practical and verifiable prediction methods for the service life of bearings plays a critical role in improving the reliability and safety of aircraft engines. The concept of grade-life (GL) is introduced to de- scribe the service life of bearings. A GL prognostic model for aircraft engine bearings is proposed based on sup- port vector machine (SVM) and fuzzy logic inference. Firstly, the mathematical model is discussed to predict the physics-based GL (PGL). Then, the diagnostic estimation model based on SVM is presented in detail to predict the empirical GL (EPL). Thirdly, a fuzzy logic inference is adopted to fuse two GL predicted results. Finally, the GL prognostic model is verified by the run-to-failure data acquired from an accelerated life test of an aircraft bearing. The results show that the model provides a more practical and reliable prediction for the service life of bearings.
基金The National Key Project of China duringthe 10th Five-Year Plan Period (NoMKPT-01-004(ZD))
文摘A new surface strengthening technology, luster polish strengthening treatment, was proposed to treat the raceway surface of aeroengine bearings (9Cr18Mo) with the centrifugal strengthening machine exclusively designed for luster polish strengthening treatment. The experimental results showed that luster polish strengthening treatment produced a compressive residual stress layer with a depth of over 80 μm below the surface of the bearing raceway, and thus effectively removed the metamorphic layer in the raceway surface. After luster polish strengthening treatment, the average surface hardness of the aeroengine bearing raceway was increased from 61.02 HRC to 63.01 HRC, the surface roughness was reduced from 0.06 μm to 0.03 μm, and the contact fatigue life of the aeroengine bearings was improved by about 90%, with the dispersion of fatigue life being reduced remarkably. Theoretical calculation result agrees with that obtained by experiment.
文摘航空发动机结构与系统的复杂性导致轴承的故障诊断方法通常面临特征提取与模式识别的困难。针对以上不足,考虑实际工程诊断的实时性与准确性,提出了一种新的基于转子位移概率密度信息(probability density information of rotor displacement,PIRD)的航空发动机轴承智能故障诊断方法。其主要对一维卷积神经网络(1-dimensional convolutional neural network,1DCNN)模型进行改进,在传统的卷积层前面增加了PIRD的提取层,可以提取转子振动位移信号的概率密度信息,有效地降低了数据的冗余度,同时保留了故障监测的重要指标。提出的PIRD-CNN诊断模型保留了1DCNN端到端的故障诊断优势,将该模型在航空发动机试验台产生的轴承故障数据进行测试,其对轴承故障诊断精度可达96.58%,与基准研究相对比表明,PIRD-CNN能够快速且更加精准地诊断航空发动机轴承的故障。
文摘The worldwide air traffic underwent a rapid development in recent decades.?Between the early 70s and the late 90s of the last century civil air traffic?doubled every 15 years. The civil aviation market will continue to grow with 4% - 5%?each year within the next 20 years. This enormous growth represents major?challenges for airframers, engine makers, suppliers, airlines, air traffic management?and ground infrastructure. In addition, the public debate on the worldwide?civil air traffic is dominated by environmental and climate issues, even though only 2% of the man-made carbon dioxide (CO2) emissions are due to air transportation. Therefore the aerospace industry will have to focus on a low-emission and quite air traffic, and on the conservation of natural resources and our environment. The end-use consumer and environmental policy requirements?for aircrafts of the next generation translate into components with improved efficiency and reliability. Rolling bearings are one of these components which?significantly determine the reliability and mechanical efficiency of aerospace applications such as aircraft and rotorcraft engines and transmission systems.?They have to withstand very demanding operating conditions. Especially main shaft?bearings in modern aircraft engines experience high rotational speeds andtemperatures. Furthermore aerospace bearings have to meet the highest reliability?standards and require low-weight design solutions. These operating conditions?and requirements present a continuous challenge for improvements in all?fields of bearing technology. This article presents solutions in aspects of materials, design, analysis, and surface technologies in order to meet the environmental, reliability, and economical requirements of advanced aerospace bearing systems. State of the art bearing analysis and advanced bearing design solutions?contributing to lower friction power losses and increased systems efficiency?are discussed. Weight, functional, and maintenance benefits are presented with the example of highly integrated aircraft engine main shaft bearings. It is also shown that the progress in bearing materials and surface technology development is the basis for weight and friction energy reduction in aerospace?bearing systems.