The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved...The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved segments,we studied the frequency-domain modeling and solution method for FSI in these pipeline systems.Fourteen partial differential equations(PDEs)are utilized to model the pipeline FSI,considering both frequency-dependent friction and bending-flexibility modification.To address the numerical instability encountered by the traditional transfer matrix method(TMM)in solving relatively complex pipelines,an improved TMM is proposed for solving the PDEs in the frequency domain,based on the matrix-stacking strategy and matrix representation of boundary conditions.The proposed FSI model and improved solution method are validated by numerical cases and experiments.An experimental rig of a practical hydraulic system,consisting of an aircraft engine-driven pump,a Z-shaped aero-hydraulic pipeline,and a throttle valve,was constructed for testing.The magnitude ratio of acceleration to pressure is introduced to evaluate the theoretical and experimental results,which indicate that the proposed model and solution method are effective in practical applications.The methodology presented in this paper can be used as an efficient approach for the vibrational design of aircraft hydraulic pipeline systems.展开更多
Cavitation caused by insufficient suction is a major factor that influences the life of aircraft pumps. Currently, pressurizing the tank can solve the cavitation problem under steady largeflow conditions. However, thi...Cavitation caused by insufficient suction is a major factor that influences the life of aircraft pumps. Currently, pressurizing the tank can solve the cavitation problem under steady largeflow conditions. However, this method is not always effective under transient conditions(from zero flow to full flow in a very short time). Moreover, to apply and design other measures, such as a boost impeller, the suction dynamics during the transient period must be investigated. In this paper,a novel approach based on the pressure wave propagation theory is proposed for predicting the inlet pressure of an aircraft pump under transient conditions. First, a dynamic model of a typical aircraft pump is established in the form of differential equations. Then, the transient flow model of the inlet line is described using momentum and continuity equations, and the governing equations are discretized by the method of characteristics and the finite difference method. The simulated results are in good agreement with the results from verification tests. Further simulation analysis indicates that the wave velocity and transient time may influence the inlet and reservoir pressure as well as the size of the inlet line. Finally, solutions for upgrading the inlet pressure are discussed. These solutions provide guidelines for designing inlet installations.展开更多
An integrated boost impeller can effectively improve the suction performance of an aircraft hydraulic pump(AHP).It must be designed very carefully;however,few studies thus far have investigated boost impellers.To expl...An integrated boost impeller can effectively improve the suction performance of an aircraft hydraulic pump(AHP).It must be designed very carefully;however,few studies thus far have investigated boost impellers.To explore the effect of the boost impeller,this study developed a three-dimensional computational fluid dynamics(CFD)model for an AHP based on the k-εturbulence model and full cavitation model.The results of verification tests demonstrated that the model is reliable for simulating the delivery characteristics of piston pumps and the boost capacity of the inlet impeller.Steady-state simulations reveal that the boost impeller can remarkably improve the suction performance and mitigate the cavitation damage due to insufficient fluid filling while only consuming a small proportion of the total input power.Transient-state simulations show that the pump with an impeller is more capable of catching up with a sudden increase in flow demand,and it has a lower suction flow ripple and impact.However,such a boost impeller also has some limitations such as magnifying the suction pressure fluctuation and having little effect on mitigating the cavitation caused by the back-flow jet.展开更多
The cylinder block/valve plate interface is one of the most critical frictional interfaces of the swashplate-type axial piston pump.However,the poor lubrication interface caused rapid wear and high friction loss in an...The cylinder block/valve plate interface is one of the most critical frictional interfaces of the swashplate-type axial piston pump.However,the poor lubrication interface caused rapid wear and high friction loss in an elastohydrodynamic lubrication system,decreasing the pump lifetime.Wear resistant bronze coatings were fabricated on 38CrMoAl substrate by Physical Vapor Deposition(PVD)and Chemical Vapor Deposition(CVD),respectively.Ball-on-disc wear tests were performed to comparatively investigate the wear behaviors of the coatings and bulk ductile iron samples.It can be found that the PVD-bronze coating exhibited better wear resistance than the other two samples.This enhanced wear resistance was attributed to the unique composite microstructure and desired mechanical strength,which could resist to mechanical shear and spallation,decreasing friction loss.The appropriate hardness of(1.33±0.07)GPa could be beneficial for enhancing its wear resistance.The PVD-bronze coating possessed a much lower and stable coefficient of friction(about 0.1)and wear rate(about 6000μm3.N-1.m-1)under the loading forces of about 100 N after 20 min.The wear mechanism was the abrasive wear.展开更多
The huge and rapid progress in electric drives offers new opportunities to improve the performances of aircraft at all levels:fuel burn,environmental footprint,safety,integration and production,serviceability,and mai...The huge and rapid progress in electric drives offers new opportunities to improve the performances of aircraft at all levels:fuel burn,environmental footprint,safety,integration and production,serviceability,and maintainability.Actuation for safety-critical applications like flight-controls,landing gears,and even engines is one of the major consumers of non-propulsive power.Conventional actuation with centralized hydraulic power generation and distribution and control of power by throttling has been well established for decades,but offers a limited potential of evolution.In this context,electric drives become more and more attractive to remove the natural drawbacks of conventional actuation and to offer new opportunities for improving performance.This paper takes the stock,at both the signal and power levels,of the evolution of actuation for safety-critical applications in aerospace.It focuses on the recent advances and the remaining challenges to be taken toward full electrical actuation for commercial and military aircraft,helicopters,and launchers.It logically starts by emphasizing the specificity of safety-critical actuation for aerospace.The following section addresses in details the evolution of aerospace actuation from mechanically-signaled and hydraulically-supplied to all electric,with special emphasis on research and development programs and on solutions entered into service.Finally,the last section reviews the challenges to be taken to generalize the use of all-electric actuators for future aircraft programs.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51975025 and 51890822)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2016QNRC001)the National Key Research and Development Program of China(No.2019YFB2004500)。
文摘The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved segments,we studied the frequency-domain modeling and solution method for FSI in these pipeline systems.Fourteen partial differential equations(PDEs)are utilized to model the pipeline FSI,considering both frequency-dependent friction and bending-flexibility modification.To address the numerical instability encountered by the traditional transfer matrix method(TMM)in solving relatively complex pipelines,an improved TMM is proposed for solving the PDEs in the frequency domain,based on the matrix-stacking strategy and matrix representation of boundary conditions.The proposed FSI model and improved solution method are validated by numerical cases and experiments.An experimental rig of a practical hydraulic system,consisting of an aircraft engine-driven pump,a Z-shaped aero-hydraulic pipeline,and a throttle valve,was constructed for testing.The magnitude ratio of acceleration to pressure is introduced to evaluate the theoretical and experimental results,which indicate that the proposed model and solution method are effective in practical applications.The methodology presented in this paper can be used as an efficient approach for the vibrational design of aircraft hydraulic pipeline systems.
基金financially supported by the National Natural Science Foundation of China (No. 51775013)
文摘Cavitation caused by insufficient suction is a major factor that influences the life of aircraft pumps. Currently, pressurizing the tank can solve the cavitation problem under steady largeflow conditions. However, this method is not always effective under transient conditions(from zero flow to full flow in a very short time). Moreover, to apply and design other measures, such as a boost impeller, the suction dynamics during the transient period must be investigated. In this paper,a novel approach based on the pressure wave propagation theory is proposed for predicting the inlet pressure of an aircraft pump under transient conditions. First, a dynamic model of a typical aircraft pump is established in the form of differential equations. Then, the transient flow model of the inlet line is described using momentum and continuity equations, and the governing equations are discretized by the method of characteristics and the finite difference method. The simulated results are in good agreement with the results from verification tests. Further simulation analysis indicates that the wave velocity and transient time may influence the inlet and reservoir pressure as well as the size of the inlet line. Finally, solutions for upgrading the inlet pressure are discussed. These solutions provide guidelines for designing inlet installations.
基金financially supported by the National Natural Science Foundation of China(No.51775013)the Science and Technology Research Project of Jiangxi Provincial Department of Education(No.GJJ201914)。
文摘An integrated boost impeller can effectively improve the suction performance of an aircraft hydraulic pump(AHP).It must be designed very carefully;however,few studies thus far have investigated boost impellers.To explore the effect of the boost impeller,this study developed a three-dimensional computational fluid dynamics(CFD)model for an AHP based on the k-εturbulence model and full cavitation model.The results of verification tests demonstrated that the model is reliable for simulating the delivery characteristics of piston pumps and the boost capacity of the inlet impeller.Steady-state simulations reveal that the boost impeller can remarkably improve the suction performance and mitigate the cavitation damage due to insufficient fluid filling while only consuming a small proportion of the total input power.Transient-state simulations show that the pump with an impeller is more capable of catching up with a sudden increase in flow demand,and it has a lower suction flow ripple and impact.However,such a boost impeller also has some limitations such as magnifying the suction pressure fluctuation and having little effect on mitigating the cavitation caused by the back-flow jet.
基金supported by the Key Research and Development Program of Zhejiang Province,China(Nos.2020C01153,2022C01139)。
文摘The cylinder block/valve plate interface is one of the most critical frictional interfaces of the swashplate-type axial piston pump.However,the poor lubrication interface caused rapid wear and high friction loss in an elastohydrodynamic lubrication system,decreasing the pump lifetime.Wear resistant bronze coatings were fabricated on 38CrMoAl substrate by Physical Vapor Deposition(PVD)and Chemical Vapor Deposition(CVD),respectively.Ball-on-disc wear tests were performed to comparatively investigate the wear behaviors of the coatings and bulk ductile iron samples.It can be found that the PVD-bronze coating exhibited better wear resistance than the other two samples.This enhanced wear resistance was attributed to the unique composite microstructure and desired mechanical strength,which could resist to mechanical shear and spallation,decreasing friction loss.The appropriate hardness of(1.33±0.07)GPa could be beneficial for enhancing its wear resistance.The PVD-bronze coating possessed a much lower and stable coefficient of friction(about 0.1)and wear rate(about 6000μm3.N-1.m-1)under the loading forces of about 100 N after 20 min.The wear mechanism was the abrasive wear.
文摘The huge and rapid progress in electric drives offers new opportunities to improve the performances of aircraft at all levels:fuel burn,environmental footprint,safety,integration and production,serviceability,and maintainability.Actuation for safety-critical applications like flight-controls,landing gears,and even engines is one of the major consumers of non-propulsive power.Conventional actuation with centralized hydraulic power generation and distribution and control of power by throttling has been well established for decades,but offers a limited potential of evolution.In this context,electric drives become more and more attractive to remove the natural drawbacks of conventional actuation and to offer new opportunities for improving performance.This paper takes the stock,at both the signal and power levels,of the evolution of actuation for safety-critical applications in aerospace.It focuses on the recent advances and the remaining challenges to be taken toward full electrical actuation for commercial and military aircraft,helicopters,and launchers.It logically starts by emphasizing the specificity of safety-critical actuation for aerospace.The following section addresses in details the evolution of aerospace actuation from mechanically-signaled and hydraulically-supplied to all electric,with special emphasis on research and development programs and on solutions entered into service.Finally,the last section reviews the challenges to be taken to generalize the use of all-electric actuators for future aircraft programs.