The rapid pace of change in the wide band gap(WBG)power semiconductor area has led to an explosion in potential uses for WBG devices in a huge variety of applications.The applications include automotive,aerospace and ...The rapid pace of change in the wide band gap(WBG)power semiconductor area has led to an explosion in potential uses for WBG devices in a huge variety of applications.The applications include automotive,aerospace and traction applications,as well as grid related or charging systems,with the potential to provide paradigm shifts in performance and efficiency over Silicon devices in current use today.Despite these exciting developments,however,there are still many outstanding challenges for both researchers and industry to solve before WBG technology becomes pervasive.In this paper we will explore some of these challenges and highlight the strengths of WBG devices,some of the specific issues for machine drives and develop some potential solutions for future developments in power electronics.展开更多
As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft ele...As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft electrical power distribution system based on the distributed computer system is proposed. The principles, features and structure of the aircraft electrical power distribution system and the distributed computer system named electrical load management system (ELMS) are studied. The ELMS composed of four electrical load management centers (ELMCs) and two power source processors (PSPs) operates in the 1553B buses. Principles of the ELMCs and the PSPs are introduced. With the application of the distributed computer system, the aircraft electrical power distribution system is simple, adaptable and flexible.展开更多
Battery powered vertical takeoff and landing(VTOL) aircraft attracts more and more interests from public, while limited hover endurance hinders many prospective applications. Based on the weight models of battery, mot...Battery powered vertical takeoff and landing(VTOL) aircraft attracts more and more interests from public, while limited hover endurance hinders many prospective applications. Based on the weight models of battery, motor and electronic speed controller, the power consumption model of propeller and the constant power discharge model of battery, an efficient method to estimate the hover endurance of battery powered VTOL aircraft was presented. In order to understand the mechanism of performance improvement, the impacts of propulsion system parameters on hover endurance were analyzed by simulations, including the motor power density, the battery capacity, specific energy and Peukert coefficient. Ground experiment platform was established and validation experiments were carried out, the results of which showed a well agreement with the simulations. The estimation method and the analysis results could be used for optimization design and hover performance evaluation of battery powered VTOL aircraft.展开更多
Reducing greenhouse gases, saving energy resources and mass optimization require technological changes towards increasingly electric vehicles. At the same time, performance improvement of semiconductor and dielectric ...Reducing greenhouse gases, saving energy resources and mass optimization require technological changes towards increasingly electric vehicles. At the same time, performance improvement of semiconductor and dielectric materials further promotes electronic components confinement, resulting in a significant increase of embedded power densities. In the particular case of future hybrid propulsion aircrafts, electrical power that intended to supply reactors would be converted through power electronics components mounted on power busbars and insulated by solid dielectrics materials. These dielectrics materials have to respond to various electrical constraints of use (HVDC), in spite of environment change of aircraft parameters such as low pressure, temperature and thermal cycles, humidity... Unfortunately, partial discharges phenomenon is the most problem within electrical insulation system (EIS). Based on a topological model of power busbars designed for power converters dedicated to hybrid aircraft, partial discharge studies were conducted by simulation in various charging conditions of a PTFE insulator. Simulation results, which focus on electric field thresholds criteria of partial discharge inception voltage in air, reveal a net sensitivity of a space charge accumulation and distribution on dielectrics behaviour even for low space charge density, depending on their location in dielectrics. Compared to the behaviour observed with implanted homocharges, when by increasing homocharges density from 0.5 C/m3 to 2 C/m3 we observe a decrease of electric field by 450%, simulation results show a highest risk of partial discharge inception when heterocharges are accumulated inside dielectrics. Their accumulation increases the electric field in triple points beyond electric field thresholds of partial discharge inception in air. The simulated electric field reaching 22 kV/mm with only 2 C/m3 of heterocharges density accumulated in dielectric/busbars interfaces.展开更多
文摘The rapid pace of change in the wide band gap(WBG)power semiconductor area has led to an explosion in potential uses for WBG devices in a huge variety of applications.The applications include automotive,aerospace and traction applications,as well as grid related or charging systems,with the potential to provide paradigm shifts in performance and efficiency over Silicon devices in current use today.Despite these exciting developments,however,there are still many outstanding challenges for both researchers and industry to solve before WBG technology becomes pervasive.In this paper we will explore some of these challenges and highlight the strengths of WBG devices,some of the specific issues for machine drives and develop some potential solutions for future developments in power electronics.
文摘As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft electrical power distribution system based on the distributed computer system is proposed. The principles, features and structure of the aircraft electrical power distribution system and the distributed computer system named electrical load management system (ELMS) are studied. The ELMS composed of four electrical load management centers (ELMCs) and two power source processors (PSPs) operates in the 1553B buses. Principles of the ELMCs and the PSPs are introduced. With the application of the distributed computer system, the aircraft electrical power distribution system is simple, adaptable and flexible.
文摘Battery powered vertical takeoff and landing(VTOL) aircraft attracts more and more interests from public, while limited hover endurance hinders many prospective applications. Based on the weight models of battery, motor and electronic speed controller, the power consumption model of propeller and the constant power discharge model of battery, an efficient method to estimate the hover endurance of battery powered VTOL aircraft was presented. In order to understand the mechanism of performance improvement, the impacts of propulsion system parameters on hover endurance were analyzed by simulations, including the motor power density, the battery capacity, specific energy and Peukert coefficient. Ground experiment platform was established and validation experiments were carried out, the results of which showed a well agreement with the simulations. The estimation method and the analysis results could be used for optimization design and hover performance evaluation of battery powered VTOL aircraft.
文摘Reducing greenhouse gases, saving energy resources and mass optimization require technological changes towards increasingly electric vehicles. At the same time, performance improvement of semiconductor and dielectric materials further promotes electronic components confinement, resulting in a significant increase of embedded power densities. In the particular case of future hybrid propulsion aircrafts, electrical power that intended to supply reactors would be converted through power electronics components mounted on power busbars and insulated by solid dielectrics materials. These dielectrics materials have to respond to various electrical constraints of use (HVDC), in spite of environment change of aircraft parameters such as low pressure, temperature and thermal cycles, humidity... Unfortunately, partial discharges phenomenon is the most problem within electrical insulation system (EIS). Based on a topological model of power busbars designed for power converters dedicated to hybrid aircraft, partial discharge studies were conducted by simulation in various charging conditions of a PTFE insulator. Simulation results, which focus on electric field thresholds criteria of partial discharge inception voltage in air, reveal a net sensitivity of a space charge accumulation and distribution on dielectrics behaviour even for low space charge density, depending on their location in dielectrics. Compared to the behaviour observed with implanted homocharges, when by increasing homocharges density from 0.5 C/m3 to 2 C/m3 we observe a decrease of electric field by 450%, simulation results show a highest risk of partial discharge inception when heterocharges are accumulated inside dielectrics. Their accumulation increases the electric field in triple points beyond electric field thresholds of partial discharge inception in air. The simulated electric field reaching 22 kV/mm with only 2 C/m3 of heterocharges density accumulated in dielectric/busbars interfaces.