Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruption...Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruptions.Following the route network scheme and generated flight timetables,aircraft maintenance routing and crew scheduling are critical factors in airline planning and operations cost management.This study considers the simultaneous assignment of aircraft fleet and crew to the scheduled flight while satisfying a set of operational constraints,rules,and regulations.Considering multiple locations for airline maintenance and crew bases,we solve the problem of integrated Aircraft Maintenance Routing and Crew Rostering(AMRCR)to achieve the minimum airline cost.One real challenge to the efficiency of the planning results is the possible disruptions in the initial scheduled flights.Due to the fact that disruption scenarios are expressed discretely with a specified probability,and we provide adjustable decisions under disruption to deal with this disruption risk,we provide a Two-Stage Scenario-Based Robust Optimization(TSRO)model.In this model,here-and-now or first-stage variables are the initial resource assignment.Furthermore,to adapt itself to different disruption scenarios,the model considers some adjustable variables,such as the decision to cancel the flight in case of disruption,as wait-and-see or second-stage variables.Considering the complexity of integrated models,and the scenario-based decomposable structure of the TRSO model to solve it with better computational performance,we apply the column and row generation(CRG)method that iteratively considers the disruption scenarios.The numerical results confirm the applicability of the proposed TSRO model in providing the AMRCR problem with an integrated and robust solution with an acceptable level of computational tractability.To evaluate the proposed TSRO model,which solves the AMRCR problem in an integrated and robust manner,five Key Performance Indicators(KPIs)like Number of delayed/canceled flights,Average delay time,and Average profit are taken into account.As key results driven by conducting a case study,we show the proposed TSRO model has substantially improved the solutions at all indicators compared with those of the sequential/non-integrated and nominal/non-robust models.The simulated instances used to assess the performance of the proposed model and CRG method reveal that both CPLEX and the CRG method exhibit comparable and nearly optimal performance for small-scale problems.However,for large-scale instances the proposed TSRO model falls short in terms of computational efficiency.Conversely,the proposed CRG method is capable of significantly reducing computational time and the optimality gap to an acceptable level.展开更多
This paper proposes an optimization model for the airport ground movement problem(GMP)based on bilevel programming to address taxi conflicts on the airport ground and to improve the operating safety and efficiency.To ...This paper proposes an optimization model for the airport ground movement problem(GMP)based on bilevel programming to address taxi conflicts on the airport ground and to improve the operating safety and efficiency.To solve GMP,an iterative heuristic algorithm is designed.Instead of separately investigating each problem,this model simultaneously coordinates and optimizes the aircraft routing and scheduling.A simulation test is conducted on Nanjing Lukou International Airport(NKG)and the results show that the bilevel programming model can clearly outperform the widely used first-come-first-service(FCFS)scheduling scheme in terms of aircraft operational time under the precondition of none conflict.The research effort demonstrates that with the reduced operating cost and the improved overall efficiency,the proposed model can assist operations of the airports that are facing increasing traffic demand and working at almost maximum capacity.展开更多
Terminal airspace(TMA)is the airspace centering several military and civil aviation airports with complex route structure,limited airspace resources,traffic flow,difficult management and considerable airspace complexi...Terminal airspace(TMA)is the airspace centering several military and civil aviation airports with complex route structure,limited airspace resources,traffic flow,difficult management and considerable airspace complexity.A scientific and rational sectorization of TMA can optimize airspace resources,and sufficiently utilize the control of human resources to ensure the safety of TMA.The functional sectorization model was established based on the route structure of arriving and departing aircraft as well as controlling requirements.Based on principles of sectorization and topological relations within a network,the arrival and departure sectorization model was established,using tree based ant colony algorithm(ACO)searching.Shanghai TMA was taken as an example to be sectorizaed,and the result showed that this model was superior to traditional ones when arrival and departure routes were separated at dense airport terminal airspace.展开更多
文摘Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruptions.Following the route network scheme and generated flight timetables,aircraft maintenance routing and crew scheduling are critical factors in airline planning and operations cost management.This study considers the simultaneous assignment of aircraft fleet and crew to the scheduled flight while satisfying a set of operational constraints,rules,and regulations.Considering multiple locations for airline maintenance and crew bases,we solve the problem of integrated Aircraft Maintenance Routing and Crew Rostering(AMRCR)to achieve the minimum airline cost.One real challenge to the efficiency of the planning results is the possible disruptions in the initial scheduled flights.Due to the fact that disruption scenarios are expressed discretely with a specified probability,and we provide adjustable decisions under disruption to deal with this disruption risk,we provide a Two-Stage Scenario-Based Robust Optimization(TSRO)model.In this model,here-and-now or first-stage variables are the initial resource assignment.Furthermore,to adapt itself to different disruption scenarios,the model considers some adjustable variables,such as the decision to cancel the flight in case of disruption,as wait-and-see or second-stage variables.Considering the complexity of integrated models,and the scenario-based decomposable structure of the TRSO model to solve it with better computational performance,we apply the column and row generation(CRG)method that iteratively considers the disruption scenarios.The numerical results confirm the applicability of the proposed TSRO model in providing the AMRCR problem with an integrated and robust solution with an acceptable level of computational tractability.To evaluate the proposed TSRO model,which solves the AMRCR problem in an integrated and robust manner,five Key Performance Indicators(KPIs)like Number of delayed/canceled flights,Average delay time,and Average profit are taken into account.As key results driven by conducting a case study,we show the proposed TSRO model has substantially improved the solutions at all indicators compared with those of the sequential/non-integrated and nominal/non-robust models.The simulated instances used to assess the performance of the proposed model and CRG method reveal that both CPLEX and the CRG method exhibit comparable and nearly optimal performance for small-scale problems.However,for large-scale instances the proposed TSRO model falls short in terms of computational efficiency.Conversely,the proposed CRG method is capable of significantly reducing computational time and the optimality gap to an acceptable level.
基金supported by the National Natural Science Foundations of China(Nos.U1933118,U2033205)。
文摘This paper proposes an optimization model for the airport ground movement problem(GMP)based on bilevel programming to address taxi conflicts on the airport ground and to improve the operating safety and efficiency.To solve GMP,an iterative heuristic algorithm is designed.Instead of separately investigating each problem,this model simultaneously coordinates and optimizes the aircraft routing and scheduling.A simulation test is conducted on Nanjing Lukou International Airport(NKG)and the results show that the bilevel programming model can clearly outperform the widely used first-come-first-service(FCFS)scheduling scheme in terms of aircraft operational time under the precondition of none conflict.The research effort demonstrates that with the reduced operating cost and the improved overall efficiency,the proposed model can assist operations of the airports that are facing increasing traffic demand and working at almost maximum capacity.
基金supported by the National Natural Science Foundation of China(Nos.U1233101,71271113)the Fundamental Research Funds for the Central Universities(No.NS2016062)
文摘Terminal airspace(TMA)is the airspace centering several military and civil aviation airports with complex route structure,limited airspace resources,traffic flow,difficult management and considerable airspace complexity.A scientific and rational sectorization of TMA can optimize airspace resources,and sufficiently utilize the control of human resources to ensure the safety of TMA.The functional sectorization model was established based on the route structure of arriving and departing aircraft as well as controlling requirements.Based on principles of sectorization and topological relations within a network,the arrival and departure sectorization model was established,using tree based ant colony algorithm(ACO)searching.Shanghai TMA was taken as an example to be sectorizaed,and the result showed that this model was superior to traditional ones when arrival and departure routes were separated at dense airport terminal airspace.