A flight control system is designed for a reusable launch vehicle with aerodynamic control surfaces and reaction control system based on a variable-structure control and neural network theory.The control problems of c...A flight control system is designed for a reusable launch vehicle with aerodynamic control surfaces and reaction control system based on a variable-structure control and neural network theory.The control problems of coupling among the channels and the uncertainty of model parameters are solved by using the method.High precise and robust tracking of required attitude angles can be achieved in complicated air space.A mathematical model of reusable launch vehicle is presented first,and then a controller of flight system is presented.Base on the mathematical model,the controller is divided into two parts:variable-structure controller and neural network module which is used to modify the parameters of controller.This control system decouples the lateraldirectional tunnels well with a neural network sliding mode controller and provides a robust and de-coupled tracking for mission angle profiles.After this a control allocation algorithm is employed to allocate the torque moments to aerodynamic control surfaces and thrusters.The final simulation shows that the control system has a good accurate,robust and de-coupled tracking performance.The stable state error is less than 1°,and the overshoot is less than 5%.展开更多
针对主从式结构飞行器协同编队控制问题,以侧滑转弯飞行器为研究对象,采用制导控制一体化(Integrated guidance and control,IGC)方法设计编队控制器。首先在惯性坐标系中定义相对运动坐标系,建立相对运动模型,结合飞行器动力学模型,得...针对主从式结构飞行器协同编队控制问题,以侧滑转弯飞行器为研究对象,采用制导控制一体化(Integrated guidance and control,IGC)方法设计编队控制器。首先在惯性坐标系中定义相对运动坐标系,建立相对运动模型,结合飞行器动力学模型,得到全状态制导控制一体化模型;然后采用反演方法,结合滑模变结构与神经网络自适应理论设计了编队控制器,并证明了控制系统稳定性;最后在高速情况下进行了六自由度数值仿真,对比了IGC设计方法与分离设计方法的控制性能。仿真结果表明所设计的IGC控制器能够快速精确地对期望编队队形进行构建与保持,并且较分离设计方法具有优越性。展开更多
文摘A flight control system is designed for a reusable launch vehicle with aerodynamic control surfaces and reaction control system based on a variable-structure control and neural network theory.The control problems of coupling among the channels and the uncertainty of model parameters are solved by using the method.High precise and robust tracking of required attitude angles can be achieved in complicated air space.A mathematical model of reusable launch vehicle is presented first,and then a controller of flight system is presented.Base on the mathematical model,the controller is divided into two parts:variable-structure controller and neural network module which is used to modify the parameters of controller.This control system decouples the lateraldirectional tunnels well with a neural network sliding mode controller and provides a robust and de-coupled tracking for mission angle profiles.After this a control allocation algorithm is employed to allocate the torque moments to aerodynamic control surfaces and thrusters.The final simulation shows that the control system has a good accurate,robust and de-coupled tracking performance.The stable state error is less than 1°,and the overshoot is less than 5%.
文摘针对主从式结构飞行器协同编队控制问题,以侧滑转弯飞行器为研究对象,采用制导控制一体化(Integrated guidance and control,IGC)方法设计编队控制器。首先在惯性坐标系中定义相对运动坐标系,建立相对运动模型,结合飞行器动力学模型,得到全状态制导控制一体化模型;然后采用反演方法,结合滑模变结构与神经网络自适应理论设计了编队控制器,并证明了控制系统稳定性;最后在高速情况下进行了六自由度数值仿真,对比了IGC设计方法与分离设计方法的控制性能。仿真结果表明所设计的IGC控制器能够快速精确地对期望编队队形进行构建与保持,并且较分离设计方法具有优越性。