γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.展开更多
In aircraft structural dynamic design the matching of guns with their supporting structure is one of the most important tasks on which hinges the success or failure of the structural design. The design curves for matc...In aircraft structural dynamic design the matching of guns with their supporting structure is one of the most important tasks on which hinges the success or failure of the structural design. The design curves for matching guns with their supporting structure can be obtained from response calculations of the plate-spring system supporting the gun on the ground,the model structure tested on the ground and the actual structure.A set of matching curves is given for engineering application.Then,the matching design can be accomplished by means of impact load spectrograms so as to perform an optimal structural design and to make further improvements on dynamic design program.展开更多
3D digital design for cranes’ structures based on hybrid software architecture of Client/Server and Browser/Server is introduced in this paper. Based on Pro/ENGINEER platform,3D parametric model family is built to al...3D digital design for cranes’ structures based on hybrid software architecture of Client/Server and Browser/Server is introduced in this paper. Based on Pro/ENGINEER platform,3D parametric model family is built to allow generation of feasible configurations of cranes’ structures in Client/Server framework. Taking use of Visual C++,the second exploiting software kit provided by Pro/ENGINEER and ANSYS GUI/APDL modeling patterns,an integration method of 3D CAD and CAE is achieved,which includes regeneration of 3D parametric model,synchronous updating and analysis of FEA model. As in Browser/Server framework,the 3D CAD models of parts,components and the whole structure could also be displayed in the customer’s browser in VRML format.展开更多
In this project,the miniaturization of the aircraft was realized under the premise of strong maneuverability,high concealability,and driving a certain load,and the flight mode and structural characteristics of birds w...In this project,the miniaturization of the aircraft was realized under the premise of strong maneuverability,high concealability,and driving a certain load,and the flight mode and structural characteristics of birds were imitated.A small bionic flapping wing aircraft was built.The flapping of the wing was realized by the crank slider mechanism,and the sizes of each part were calculated according to the bionics formula.The wingspan was 360.37 mm,the body width was 22 mm,the body length was 300 mm,the wing area was 0.05 m^(2),the flapping amplitude was 71°.ADAMS software was used to simulate the dynamics of the designed aircraft,and the variation of flapping amplitude and angular velocity during the movement of the aircraft was obtained,which verified the feasibility of the mechanism.The prototype aircraft was made for flight test,and the designed bionic flapping wing aircraft achieved the expected effect.It provides a theoretical basis and data support for the design and manufacture of small flapping wing aircraft.展开更多
Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.A...Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.Adopting a NURBSbased parametric modelling scheme with a small number of design variables,the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method,and demonstrated in this work to give high accuracy and efficiency.Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis,in contrast to the generally complex procedures of typical shape and size sensitivity approaches.展开更多
Intelligent structures like zero Poisson’s ratio(ZPR)cellular structures have been widely applied to the engineering fields such as morphing wings in recent decades,owing to their outstanding characteristics includin...Intelligent structures like zero Poisson’s ratio(ZPR)cellular structures have been widely applied to the engineering fields such as morphing wings in recent decades,owing to their outstanding characteristics including light weight and low effective modulus. In-plane and out-of-plane mechanical properties of ZPR cellular structures are investigated in this paper. A theoretical method for calculating in-plane tensile modulus,in-plane shear modulus and out-of-plane bending modulus of ZPR cellular structures is proposed,and the impacts of the unit cell geometrical configurations on in-plane tensile modulus,in-plane shear modulus and out-of-plane bending modulus are studied systematically based on finite element(FE)simulation. Experimental tests validate the feasibility and effectiveness of the theoretical and FE analysis. And the results show that the in-plane and out-of-plane mechanical properties of ZPR cellular structures can be manipulated by designing cell geometrical parameters.展开更多
In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selec- tivity of...In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selec- tivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disorders of the central nervous system. Specifically, new possibilities are explored in relation to allosteric and or- thosteric binding sites on dopamine receptors for the treatment of Parkinson's disease, and on muscarinic receptors for Alzheimer's disease. Future research can seek to identify ligands that can bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopa- mine receptor holds promise as a relevant therapeutic strategy for Parkinson's disease. Regarding the treatment of Alzheimer's disease, the design of dualsteric ligands for mono-oligomeric mus- carinic receptors could increase therapeutic effectiveness by generating potent compounds that could activate more than one signaling pathway.展开更多
Teamwork is gaining increasing attention in a broader management research. In addition to previous research on the relationship between team structure and innovation performance, this study draws from an interesting e...Teamwork is gaining increasing attention in a broader management research. In addition to previous research on the relationship between team structure and innovation performance, this study draws from an interesting experience-based theory advanced by Kelley and Littman (2005), which examines teams from design thinking perspective, and tests its contributions and effects on team's innovation performance. According to Kelley and Littman any team should include the following team roles: The anthropologist, the experimenter, the cross-pollinator, the hurdler, the collaborator, the director, the experience architect, the set designer, the storyteller, and the caregiver. We develop theoretical logics to explain how team structure that includes these key team roles and competences lead to a better innovation performance, and propose pertinent hypotheses. Experimental-empirical research and quantitative analysis were used in the study. The study conducted multiple experiments on three samples: a group of foreign entrepreneurship students, a group of technical students, and an additional group of randomly selected individuals, aged between 20 and 58, with diverse backgrounds. A special approach was implemented and a new instrument was developed to evaluate individuals in teams. While the results show that team that possess the major competences proposed by Kelley and Littman are more innovative, preliminary results also show that not all team roles are equally important. Moreover, team roles should be allocated equally among members for better collaboration, member satisfaction, and quick response, and within one team, one prevailing personality is optimal in terms of innovativeness. We discuss the implications of our findings for future research and managerial practice.展开更多
In general,for the majority of men,the amount of exercise is relatively large,so the dress requirements for the men' s trousers gradually have new requirements.It pays more attention to comfort and personality.The th...In general,for the majority of men,the amount of exercise is relatively large,so the dress requirements for the men' s trousers gradually have new requirements.It pays more attention to comfort and personality.The theoretical basis of the clothing loose amount and structural design are both the shape change cased by skin stretch of human body under various movement conditions,the human body has different postures,which will generate different skin stretch data.The combination of static body type and dynamic movements of human body determines clothing structure design,different body movements,different degree of movements and changes in skin stretch all have a direct impact on the form of clothing attached to the human body.展开更多
On November 26,2019 a strong earthquake of magnitude M6.4 occurred close to the City of Durrës,Albania(15.6 km WSW(west southwest)of Mamurras and 22 km SSW(south southwest)of Durrës),causing fatalities and c...On November 26,2019 a strong earthquake of magnitude M6.4 occurred close to the City of Durrës,Albania(15.6 km WSW(west southwest)of Mamurras and 22 km SSW(south southwest)of Durrës),causing fatalities and considerable damages in many buildings.In this article we present and analyze,by means of observational data and numerical simulation,the behavior under this earthquake of an 8-floor RC(reinforcement concrete)building,by using design spectra referring to KTP-N.2-89 and Eurocode 8.The main purpose of the authors is to better understand and evaluate the seismic performance of high-rise buildings under the design spectra with a period of soil oscillation close to the fundamental period of the structure.展开更多
In this paper, a method to design bird-strike-resistant aircraft structures is presented and illustrated through examples. The focus is on bird strike experiments and simulations. The explicit finite element software ...In this paper, a method to design bird-strike-resistant aircraft structures is presented and illustrated through examples. The focus is on bird strike experiments and simulations. The explicit finite element software PAM-CRASH is employed to conduct bird strike simulations, and a coupled Smooth Particles Hydrodynamic(SPH) and Finite Element(FE) method is used to simulate the interaction between a bird and a target structure. The SPH method is explained, and an SPH bird model is established. Constitutive models for various structural materials, such as aluminum alloys, composite materials, honeycomb, and foam materials that are used in aircraft structures,are presented, and model parameters are identified by conducting various material tests. Good agreements between simulation results and experimental data suggest that the numerical model is capable of predicting the dynamic responses of various aircraft structures under a bird strike,and numerical simulation can be used as a tool to design bird-strike-resistant aircraft structures.展开更多
This paper is categorized into two parts. (1) A frame work to design the aircraft wing structure and (2) analysis ofa morphing airfoil with auxetic structure. The developed design frame work in the first part is u...This paper is categorized into two parts. (1) A frame work to design the aircraft wing structure and (2) analysis ofa morphing airfoil with auxetic structure. The developed design frame work in the first part is used to arrive at the sizes of the various components of an aircraft wing structure. The strength based design is adopted, where the design loads are extracted from the aerodynamic loads. The aerodynamic loads acting on a wing structure are converted to equivalent distributed loads, which are further converted point loads to arrive at the shear forces, bending and twisting moments along the wing span. Based on the estimated shear forces, bending and twisting moments, the strength based design is employed to estimate the sizes of various sections of a composite wing structure. A three dimensional numerical model of the composite wing structure has been developed and analyzed for the extreme load conditions. Glass fiber reinforced plastic material is used in the numerical analysis. The estimated natural frequencies are observed to be in the acceptable limits. Furthermore, the discussed design principles in the first part are extended to the design of a morphing airfoil with auxetic structure. The advantages of the morphing airfoil with auxetic structure are (i) larger displacement with limited straining of the components and (ii) unique deformation characteristics, which produce a theoretical in-plane Poisson's ratio of -1. Aluminum Alloy AL6061-T651 is considered in the design of all the structural elements. The compliance characteristics of the airfoil are investigated through a numerical model. The numerical results are observed to be in close agreement with the experimental results in the literature.展开更多
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.
文摘In aircraft structural dynamic design the matching of guns with their supporting structure is one of the most important tasks on which hinges the success or failure of the structural design. The design curves for matching guns with their supporting structure can be obtained from response calculations of the plate-spring system supporting the gun on the ground,the model structure tested on the ground and the actual structure.A set of matching curves is given for engineering application.Then,the matching design can be accomplished by means of impact load spectrograms so as to perform an optimal structural design and to make further improvements on dynamic design program.
基金Supported by Shanghai Leading Academic Discipline Project ,Project Number :T0601
文摘3D digital design for cranes’ structures based on hybrid software architecture of Client/Server and Browser/Server is introduced in this paper. Based on Pro/ENGINEER platform,3D parametric model family is built to allow generation of feasible configurations of cranes’ structures in Client/Server framework. Taking use of Visual C++,the second exploiting software kit provided by Pro/ENGINEER and ANSYS GUI/APDL modeling patterns,an integration method of 3D CAD and CAE is achieved,which includes regeneration of 3D parametric model,synchronous updating and analysis of FEA model. As in Browser/Server framework,the 3D CAD models of parts,components and the whole structure could also be displayed in the customer’s browser in VRML format.
文摘In this project,the miniaturization of the aircraft was realized under the premise of strong maneuverability,high concealability,and driving a certain load,and the flight mode and structural characteristics of birds were imitated.A small bionic flapping wing aircraft was built.The flapping of the wing was realized by the crank slider mechanism,and the sizes of each part were calculated according to the bionics formula.The wingspan was 360.37 mm,the body width was 22 mm,the body length was 300 mm,the wing area was 0.05 m^(2),the flapping amplitude was 71°.ADAMS software was used to simulate the dynamics of the designed aircraft,and the variation of flapping amplitude and angular velocity during the movement of the aircraft was obtained,which verified the feasibility of the mechanism.The prototype aircraft was made for flight test,and the designed bionic flapping wing aircraft achieved the expected effect.It provides a theoretical basis and data support for the design and manufacture of small flapping wing aircraft.
基金National Natural Science Foundation of China(Grant Nos.51705158 and 51805174)the Fundamental Research Funds for the Central Universities(Grant Nos.2018MS45 and 2019MS059)。
文摘Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.Adopting a NURBSbased parametric modelling scheme with a small number of design variables,the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method,and demonstrated in this work to give high accuracy and efficiency.Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis,in contrast to the generally complex procedures of typical shape and size sensitivity approaches.
基金supported by the National Natural Science Foundation of China(No.11872207)the Aeronautical Science Foundation of China (No. 20180952007)+1 种基金the Foundation of National Key Laboratory on Ship Vibration and Noise(No.614220400307)the National Key Research and Development Program of China (No.2019YFA708904)。
文摘Intelligent structures like zero Poisson’s ratio(ZPR)cellular structures have been widely applied to the engineering fields such as morphing wings in recent decades,owing to their outstanding characteristics including light weight and low effective modulus. In-plane and out-of-plane mechanical properties of ZPR cellular structures are investigated in this paper. A theoretical method for calculating in-plane tensile modulus,in-plane shear modulus and out-of-plane bending modulus of ZPR cellular structures is proposed,and the impacts of the unit cell geometrical configurations on in-plane tensile modulus,in-plane shear modulus and out-of-plane bending modulus are studied systematically based on finite element(FE)simulation. Experimental tests validate the feasibility and effectiveness of the theoretical and FE analysis. And the results show that the in-plane and out-of-plane mechanical properties of ZPR cellular structures can be manipulated by designing cell geometrical parameters.
基金supported by SIP-IPN,CONACYT (CB-168116)FIS/IMSS (FIS/IMSS/PROT/G11-2/1013)
文摘In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selec- tivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disorders of the central nervous system. Specifically, new possibilities are explored in relation to allosteric and or- thosteric binding sites on dopamine receptors for the treatment of Parkinson's disease, and on muscarinic receptors for Alzheimer's disease. Future research can seek to identify ligands that can bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopa- mine receptor holds promise as a relevant therapeutic strategy for Parkinson's disease. Regarding the treatment of Alzheimer's disease, the design of dualsteric ligands for mono-oligomeric mus- carinic receptors could increase therapeutic effectiveness by generating potent compounds that could activate more than one signaling pathway.
文摘Teamwork is gaining increasing attention in a broader management research. In addition to previous research on the relationship between team structure and innovation performance, this study draws from an interesting experience-based theory advanced by Kelley and Littman (2005), which examines teams from design thinking perspective, and tests its contributions and effects on team's innovation performance. According to Kelley and Littman any team should include the following team roles: The anthropologist, the experimenter, the cross-pollinator, the hurdler, the collaborator, the director, the experience architect, the set designer, the storyteller, and the caregiver. We develop theoretical logics to explain how team structure that includes these key team roles and competences lead to a better innovation performance, and propose pertinent hypotheses. Experimental-empirical research and quantitative analysis were used in the study. The study conducted multiple experiments on three samples: a group of foreign entrepreneurship students, a group of technical students, and an additional group of randomly selected individuals, aged between 20 and 58, with diverse backgrounds. A special approach was implemented and a new instrument was developed to evaluate individuals in teams. While the results show that team that possess the major competences proposed by Kelley and Littman are more innovative, preliminary results also show that not all team roles are equally important. Moreover, team roles should be allocated equally among members for better collaboration, member satisfaction, and quick response, and within one team, one prevailing personality is optimal in terms of innovativeness. We discuss the implications of our findings for future research and managerial practice.
文摘In general,for the majority of men,the amount of exercise is relatively large,so the dress requirements for the men' s trousers gradually have new requirements.It pays more attention to comfort and personality.The theoretical basis of the clothing loose amount and structural design are both the shape change cased by skin stretch of human body under various movement conditions,the human body has different postures,which will generate different skin stretch data.The combination of static body type and dynamic movements of human body determines clothing structure design,different body movements,different degree of movements and changes in skin stretch all have a direct impact on the form of clothing attached to the human body.
文摘On November 26,2019 a strong earthquake of magnitude M6.4 occurred close to the City of Durrës,Albania(15.6 km WSW(west southwest)of Mamurras and 22 km SSW(south southwest)of Durrës),causing fatalities and considerable damages in many buildings.In this article we present and analyze,by means of observational data and numerical simulation,the behavior under this earthquake of an 8-floor RC(reinforcement concrete)building,by using design spectra referring to KTP-N.2-89 and Eurocode 8.The main purpose of the authors is to better understand and evaluate the seismic performance of high-rise buildings under the design spectra with a period of soil oscillation close to the fundamental period of the structure.
基金supported by Natural Science Foundation of China (No.11472225)
文摘In this paper, a method to design bird-strike-resistant aircraft structures is presented and illustrated through examples. The focus is on bird strike experiments and simulations. The explicit finite element software PAM-CRASH is employed to conduct bird strike simulations, and a coupled Smooth Particles Hydrodynamic(SPH) and Finite Element(FE) method is used to simulate the interaction between a bird and a target structure. The SPH method is explained, and an SPH bird model is established. Constitutive models for various structural materials, such as aluminum alloys, composite materials, honeycomb, and foam materials that are used in aircraft structures,are presented, and model parameters are identified by conducting various material tests. Good agreements between simulation results and experimental data suggest that the numerical model is capable of predicting the dynamic responses of various aircraft structures under a bird strike,and numerical simulation can be used as a tool to design bird-strike-resistant aircraft structures.
文摘This paper is categorized into two parts. (1) A frame work to design the aircraft wing structure and (2) analysis ofa morphing airfoil with auxetic structure. The developed design frame work in the first part is used to arrive at the sizes of the various components of an aircraft wing structure. The strength based design is adopted, where the design loads are extracted from the aerodynamic loads. The aerodynamic loads acting on a wing structure are converted to equivalent distributed loads, which are further converted point loads to arrive at the shear forces, bending and twisting moments along the wing span. Based on the estimated shear forces, bending and twisting moments, the strength based design is employed to estimate the sizes of various sections of a composite wing structure. A three dimensional numerical model of the composite wing structure has been developed and analyzed for the extreme load conditions. Glass fiber reinforced plastic material is used in the numerical analysis. The estimated natural frequencies are observed to be in the acceptable limits. Furthermore, the discussed design principles in the first part are extended to the design of a morphing airfoil with auxetic structure. The advantages of the morphing airfoil with auxetic structure are (i) larger displacement with limited straining of the components and (ii) unique deformation characteristics, which produce a theoretical in-plane Poisson's ratio of -1. Aluminum Alloy AL6061-T651 is considered in the design of all the structural elements. The compliance characteristics of the airfoil are investigated through a numerical model. The numerical results are observed to be in close agreement with the experimental results in the literature.