This study examines the impact of variations in side-blowing airflow velocity on plasma generation,combustion wave propagation mechanisms,and surface damage in fused silica induced by a combined millisecond-nanosecond...This study examines the impact of variations in side-blowing airflow velocity on plasma generation,combustion wave propagation mechanisms,and surface damage in fused silica induced by a combined millisecond-nanosecond pulsed laser.The airflow rate and pulse delay are the main experimental variables.The evolution of plasma motion was recorded using ultrafast time-resolved optical shadowing.The experimental results demonstrate that the expansion velocities of the plasma and combustion wave are influenced differently by the sideblowing airflow at different airflow rates(0.2 Ma,0.4 Ma,and 0.6 Ma).As the flow rate of the sideblow air stream increases,the initial expansion velocities of the plasma and combustion wave gradually decrease,and the side-blow air stream increasingly suppresses the plasma.It is important to note that the target vapor is always formed and ionized into plasma during the combined pulse laser action.Therefore,the side-blown airflow alone cannot completely clear the plasma.Depending on the delay conditions,the pressure of the side-blowing airflow,the influence of inverse Bremsstrahlung radiation absorption and target surface absorption mechanisms can lead to a phenomenon known as the double combustion waves when using a nanosecond pulse laser.Both simulation and experimental results are consistent,indicating the potential for further exploration of fused silica targets in the laser field.展开更多
This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data f...This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data from seven ground gradient stations located on the eastern slopes, western slopes, and mountaintops combined with backward trajectory cluster analysis. The results indicate 1) that the LM's rainy season, characterized by overcast and rainy days, is mainly influenced by cold and moist airflows(CMAs) from the westerly direction and warm and moist airflows(WMAs) from a slightly southern direction. The precipitation amounts under four airflow transport paths are ranked from largest to smallest as follows: WMAs, CMAs, warm dry airflows(WDAs), and cold dry airflows(CDAs). 2) WMAs contribute significantly more to the intensity of regional precipitation than the other three types of airflows. During localized precipitation events,warm airflows have higher precipitation intensities at night than cold airflows, while the opposite is true during the afternoon. 3) During regional precipitation events, water vapor content is the primary influencing factor. Precipitation characteristics under humid airflows are mainly affected by high water vapor content, whereas during dry airflow precipitation, dynamic and thermodynamic factors have a more pronounced impact. 4) During localized precipitation events, the influence of dynamic and thermodynamic factors is more complex than during regional precipitation, with the precipitation characteristics of the four airflows closely related to their water vapor content, air temperature and humidity attributes, and orographic lifting. 5) Compared to regional precipitation, the influence of topography is more prominent in localized precipitation processes.展开更多
The study of the dynamic disaster mechanism of coal and gas outburst two-phase flow is crucial for improving disaster reduction and rescue ability of coal mine outburst accidents.An outburst test in a T-shaped roadway...The study of the dynamic disaster mechanism of coal and gas outburst two-phase flow is crucial for improving disaster reduction and rescue ability of coal mine outburst accidents.An outburst test in a T-shaped roadway was conducted using a self-developed large-scale outburst dynamic disaster test system.We investigated the release characteristics of main energy sources in coal seam,and obtained the dynamic characteristics of outburst two-phase flow in a roadway.Additionally,we established a formation model for outburst impact flow and a model for its flow in a bifurcated structure.The results indicate that the outburst process exhibits pulse characteristics,and the rapid destruction process of coal seam and the blocking state of gas flow are the main causes of the pulse phenomenon.The outburst energy is released in stages,and the elastic potential energy is released in the vertical direction before the horizontal direction.In a straight roadway,the impact force oscillates along the roadway.With an increase in the solid–gas ratio,the two-phase flow impact force gradually increases,and the disaster range extends from the middle of the roadway to the coal seam.In the area near the coal seam,the disaster caused by the two-phase flow impact is characterized by intermittent recovery.In a bifurcated roadway,the effect of impact airflow on impact dynamic disaster is much higher than that of two-phase flow,and the impact force tends to weaken with increasing solid-gas ratio.The impact force is asymmetrically distributed;it is higher on the left of the bifurcated roadway.With an increase in the solid-gas ratio,the static pressure rapidly decreases,and the bifurcated structure accelerates the attenuation of static pressure.Moreover,secondary acceleration is observed when the shock wave moves along the T-shaped roadway,indicating that the bifurcated structure increases the shock wave velocity.展开更多
基金funded by the International Science and Technology Cooperation Project of Jilin Provincial Department of Science and Technology(No.20230402078GH)。
文摘This study examines the impact of variations in side-blowing airflow velocity on plasma generation,combustion wave propagation mechanisms,and surface damage in fused silica induced by a combined millisecond-nanosecond pulsed laser.The airflow rate and pulse delay are the main experimental variables.The evolution of plasma motion was recorded using ultrafast time-resolved optical shadowing.The experimental results demonstrate that the expansion velocities of the plasma and combustion wave are influenced differently by the sideblowing airflow at different airflow rates(0.2 Ma,0.4 Ma,and 0.6 Ma).As the flow rate of the sideblow air stream increases,the initial expansion velocities of the plasma and combustion wave gradually decrease,and the side-blow air stream increasingly suppresses the plasma.It is important to note that the target vapor is always formed and ionized into plasma during the combined pulse laser action.Therefore,the side-blown airflow alone cannot completely clear the plasma.Depending on the delay conditions,the pressure of the side-blowing airflow,the influence of inverse Bremsstrahlung radiation absorption and target surface absorption mechanisms can lead to a phenomenon known as the double combustion waves when using a nanosecond pulse laser.Both simulation and experimental results are consistent,indicating the potential for further exploration of fused silica targets in the laser field.
基金supported by the National Natural Sciences Foundation of China (Grant Nos. 42075073 and 42075077)。
文摘This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data from seven ground gradient stations located on the eastern slopes, western slopes, and mountaintops combined with backward trajectory cluster analysis. The results indicate 1) that the LM's rainy season, characterized by overcast and rainy days, is mainly influenced by cold and moist airflows(CMAs) from the westerly direction and warm and moist airflows(WMAs) from a slightly southern direction. The precipitation amounts under four airflow transport paths are ranked from largest to smallest as follows: WMAs, CMAs, warm dry airflows(WDAs), and cold dry airflows(CDAs). 2) WMAs contribute significantly more to the intensity of regional precipitation than the other three types of airflows. During localized precipitation events,warm airflows have higher precipitation intensities at night than cold airflows, while the opposite is true during the afternoon. 3) During regional precipitation events, water vapor content is the primary influencing factor. Precipitation characteristics under humid airflows are mainly affected by high water vapor content, whereas during dry airflow precipitation, dynamic and thermodynamic factors have a more pronounced impact. 4) During localized precipitation events, the influence of dynamic and thermodynamic factors is more complex than during regional precipitation, with the precipitation characteristics of the four airflows closely related to their water vapor content, air temperature and humidity attributes, and orographic lifting. 5) Compared to regional precipitation, the influence of topography is more prominent in localized precipitation processes.
基金This work was supported by the National Natural Science Foundation of China(Nos.51874055,52074047,and 52064016).
文摘The study of the dynamic disaster mechanism of coal and gas outburst two-phase flow is crucial for improving disaster reduction and rescue ability of coal mine outburst accidents.An outburst test in a T-shaped roadway was conducted using a self-developed large-scale outburst dynamic disaster test system.We investigated the release characteristics of main energy sources in coal seam,and obtained the dynamic characteristics of outburst two-phase flow in a roadway.Additionally,we established a formation model for outburst impact flow and a model for its flow in a bifurcated structure.The results indicate that the outburst process exhibits pulse characteristics,and the rapid destruction process of coal seam and the blocking state of gas flow are the main causes of the pulse phenomenon.The outburst energy is released in stages,and the elastic potential energy is released in the vertical direction before the horizontal direction.In a straight roadway,the impact force oscillates along the roadway.With an increase in the solid–gas ratio,the two-phase flow impact force gradually increases,and the disaster range extends from the middle of the roadway to the coal seam.In the area near the coal seam,the disaster caused by the two-phase flow impact is characterized by intermittent recovery.In a bifurcated roadway,the effect of impact airflow on impact dynamic disaster is much higher than that of two-phase flow,and the impact force tends to weaken with increasing solid-gas ratio.The impact force is asymmetrically distributed;it is higher on the left of the bifurcated roadway.With an increase in the solid-gas ratio,the static pressure rapidly decreases,and the bifurcated structure accelerates the attenuation of static pressure.Moreover,secondary acceleration is observed when the shock wave moves along the T-shaped roadway,indicating that the bifurcated structure increases the shock wave velocity.