期刊文献+
共找到2,602篇文章
< 1 2 131 >
每页显示 20 50 100
Fast Algorithm for Prediction of Airfoil Anti-icing Heat Load 被引量:2
1
作者 Xueqin Bu Rui Yang +2 位作者 Jia Yu Xiaobin Shen Guiping Lin 《Energy and Power Engineering》 2013年第4期493-497,共5页
Many flight and icing conditions should be considered in order to design an efficient ice protection system to prevent ice accretion on the aircraft surface. The anti-icing heat load is the basic knowledge for the des... Many flight and icing conditions should be considered in order to design an efficient ice protection system to prevent ice accretion on the aircraft surface. The anti-icing heat load is the basic knowledge for the design of a thermal anti-icing system. In order to help the design of the thermal anti-icing system and save the design time, a fast and efficiency method for prediction the anti-icing heat load is investigated. The computation fluid dynamics (CFD) solver and the Messinger model are applied to obtain the snapshots. Examples for the calculation of the anti-icing heat load using the proper orthogonal decomposition (POD) method are presented and compared with the CFD simulation results. It is shown that the heat loads predicted by POD method are in agreement with the CFD computation results. Moreover, it is obviously to see that the POD method is time-saving and can meet the requirement of real-time prediction. 展开更多
关键词 anti-icing Heat Load PROPER ORTHOGONAL DECOMPOSITION
下载PDF
Robustα-Fe_(2)O_(3)/Epoxy Resin Superhydrophobic Coatings for Anti-icing Property
2
作者 乔燕明 TAO Xuan +2 位作者 LI Lei 阮敏 鲁礼林 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期621-626,共6页
α-Fe_(2)O_(3)/epoxy resin composite superhydrophobic coating was prepared withα-Fe_(2)O_(3) nanoparticles and epoxy resin by spin coating method.The coating without epoxy resin has higher contact angle(CA)and lower ... α-Fe_(2)O_(3)/epoxy resin composite superhydrophobic coating was prepared withα-Fe_(2)O_(3) nanoparticles and epoxy resin by spin coating method.The coating without epoxy resin has higher contact angle(CA)and lower ice adhesion strength(IAS),but the mechanical properties are poor.Theα-Fe_(2)O_(3)/epoxy resin composite superhydrophobic coating exhibits good mechanical durability.In addition,compared with the bare aluminum substrate,the Ecorr of the composite coating is positive and the Jcorr is lower.The inhibition efficiency of the composite coating is as high as 99.98%in 3.5 wt%NaCl solution.The difference in the microstructure caused by the two preparation methods leads to the changes in mechanical properties and corrosion resistance of composite superhydrophobic coating. 展开更多
关键词 SUPERHYDROPHOBIC anti-CORROSION anti-icing ROBUST
下载PDF
Study of Flow and Heat Transfer in an Ejector-Driven Swirl Anti-Icing Chamber
3
作者 Yi Tu Yuan Wu Yu Zeng 《Fluid Dynamics & Materials Processing》 EI 2024年第5期989-1014,共26页
The formation of ice on the leading edge of aircraft engines is a serious issue,as it can have catastrophic consequences.The Swirl Anti-Icing(SAI)system,driven by ejection,circulates hot fluid within a 360°annula... The formation of ice on the leading edge of aircraft engines is a serious issue,as it can have catastrophic consequences.The Swirl Anti-Icing(SAI)system,driven by ejection,circulates hot fluid within a 360°annular chamber to heat the engine inlet lip surface and prevent icing.This study employs a validated Computational Fluid Dynamics(CFD)approach to study the impact of key geometric parameters of this system on flow and heat transfer characteristics within the anti-icing chamber.Additionally,the entropy generation rate and exergy efficiency are analyzed to assess the energy utilization in the system.The research findings indicate that,within the considered flow range,reducing the nozzle specific areaφfrom 0.03061 to 0.01083 can enhance the ejection coefficient by over 60.7%.This enhancement increases the air circulating rate,thereby intensifying convective heat transfer within the SAI chamber.However,the reduction inφalso leads to a significant increase in the required bleed air pressure and a higher entropy generation rate,indicating lower exergy efficiency.The nozzle angleθnotably affects the distribution of hot and cold spots on the lip surface of the SAI chamber.Increasingθfrom 0°to 20°reduces the maximum temperature difference on the anti-icing chamber surface by 60 K. 展开更多
关键词 Swirl anti-icing heat transfer exergy efficiency hot and cold spot aircraft engine
下载PDF
Airfoil friction drag reduction based on grid-type and super-dense array plasma actuators
4
作者 方子淇 宗豪华 +2 位作者 吴云 梁华 苏志 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期94-103,共10页
To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. Th... To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry(PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array(peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the superdense array plasma actuator created a wavy wall-parallel jet(magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level,the super-dense array plasma actuator array significantly outperformed the grid-type configuration,reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s.The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio(r), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned. 展开更多
关键词 plasma actuator flow control drag reduction airfoil
下载PDF
Influence of Flap Parameters on the Aerodynamic Performance of a Wind-Turbine Airfoil
5
作者 Yuanjun Dai Jingan Cui +2 位作者 Baohua Li Cong Wang Kunju Shi 《Fluid Dynamics & Materials Processing》 EI 2024年第4期771-786,共16页
A numerical method has been used to analyze the flow field related to a NACA 0015 airfoil with and without a flap and assess the influence of the flap height and angle on the surface pressure coefficient,lift coeffici... A numerical method has been used to analyze the flow field related to a NACA 0015 airfoil with and without a flap and assess the influence of the flap height and angle on the surface pressure coefficient,lift coefficient,and drag coefficient.The numerical results demonstrate that the flap can effectively improve the lift coefficient of the airfoil;however,at small attack angles,its influence is significantly reduced.When the angle of attack exceeds the critical stall angle and the flap height is 1.5%of the chord length,the influence of the flap becomes very evident.As the flap height increases,the starting point of the separation vortex gradually moves forward and generates a larger wake vortex.Optimal aerodynamic characteristics are obtained for 1.5%(of the chord length)flap height and a 45°flap angle;in this case,the separation vortex is effectively reduced. 展开更多
关键词 airfoil flap height flap angle lift-drag ratio aerodynamic characteristics
下载PDF
Research on Leading Edge Erosion and Aerodynamic Characteristics of Wind Turbine Blade Airfoil
6
作者 Xin Guan Yuqi Xie +2 位作者 Shuaijie Wang Mingyang Li Shiwei Wu 《Fluid Dynamics & Materials Processing》 EI 2024年第9期2045-2058,共14页
The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on ... The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on the Reynolds Averaged Navier-Stokes equations(RANS).The results indicate that when sand-induced holes and small pits are involved as leading edge wear features,they have a minimal influence on the lift and drag coefficients of the airfoil.However,if delamination occurs in the same airfoil region,it significantly impacts the lift and resistance characteristics of the airfoil.Specifically,as the angle of attack grows,there is a significant decrease in the lift coefficient accompanied by a sharp increase in the drag coefficient.As wear intensifies,these effects gradually increase.Moreover,the leading edge wear can exacerbate flow separation near the trailing edge suction surface of the airfoil and cause forward displacement of the separation point. 展开更多
关键词 Wind energy wind turbine EROSION airfoil leading edge erosion characteristics aerodynamic performance numerical simulation
下载PDF
Neurosyphilis complicated by anti-γ-aminobutyric acid-B receptor encephalitis: A case report
7
作者 Ya-Xiu Fang Xiao-Ming Zhou +7 位作者 Dong Zheng Guang-Hui Liu Peng-Bo Gao Xiao-Zhen Huang Zhi-Cheng Chen Hui Zhang Lin Chen Ya-Fang Hu 《World Journal of Clinical Cases》 SCIE 2024年第11期1960-1966,共7页
BACKGROUND Syphilis is an infectious disease caused by Treponema pallidum that can invade the central nervous system,causing encephalitis.Few cases of anti-N-methyl-Daspartate receptor autoimmune encephalitis(AE)secon... BACKGROUND Syphilis is an infectious disease caused by Treponema pallidum that can invade the central nervous system,causing encephalitis.Few cases of anti-N-methyl-Daspartate receptor autoimmune encephalitis(AE)secondary to neurosyphilis have been reported.We report a neurosyphilis patient with anti-γ-aminobutyric acid-B receptor(GABABR)AE.CASE SUMMARY A young man in his 30s who presented with acute epileptic status was admitted to a local hospital.He was diagnosed with neurosyphilis,according to serum and cerebrospinal fluid(CSF)tests for syphilis.After 14 d of antiepileptic treatment and anti-Treponema pallidum therapy with penicillin,epilepsy was controlled but serious cognitive impairment,behavioral,and serious psychiatric symptoms were observed.He was then transferred to our hospital.The Mini-Mental State Examination(MMSE)crude test results showed only 2 points.Cranial magnetic resonance imaging revealed significant cerebral atrophy and multiple fluidattenuated inversion recovery high signals in the white matter surrounding both lateral ventricles,left amygdala and bilateral thalami.Anti-GABABR antibodies were discovered in CSF(1:3.2)and serum(1:100).The patient was diagnosed with neurosyphilis complicated by anti-GABABR AE,and received methylprednisolone and penicillin.Following treatment,his mental symptoms were alleviated.Cognitive impairment was significantly improved,with a MMSE of 8 points.Serum anti-GABABR antibody titer decreased to 1:32.The patient received methylprednisolone and penicillin after discharge.Three months later,the patient’s condition was stable,but the serum anti-GABABR antibody titer was 1:100.CONCLUSION This patient with neurosyphilis combined with anti-GABABR encephalitis benefited from immunotherapy. 展开更多
关键词 anti-γ-aminobutyric acid-B receptor GABABR NEUROSYPHILIS Tissue-based assay Magnetic resonance imaging Mini-mental state examination Case report
下载PDF
State of the art and practice of pavement anti-icing and de-icing techniques 被引量:5
8
作者 WenBing Yu Xin Yi +1 位作者 Ming Guo Lin Chen 《Research in Cold and Arid Regions》 CSCD 2014年第1期14-21,共8页
Pavement snow and icing are worldwide problems, but effective countermeasures are just beginning to be developed in China. The two most common snow and ice removal methods are mechanical clearance and chemical melting... Pavement snow and icing are worldwide problems, but effective countermeasures are just beginning to be developed in China. The two most common snow and ice removal methods are mechanical clearance and chemical melting, and the advantages and disadvantages of each approach are discussed here, including environmental and structural damage caused by corrosive snow melting agents. New developments in chemical melting agents and mechanical equipment are discussed, and an overview of alternative thermal melting systems is presented, including the use of geothermy and non-geothermal heating systems utilizing solar energy, electricity, conductive pavement materials, and infrared/microwave applications. Strategic recommendations are made for continued enhancement of public safety in snow and ice conditions. 展开更多
关键词 PAVEMENT DE-ICING anti-icing technique freezing rain
下载PDF
Anti-Icing Method Based on Reducing Voltage of Transmission Lines 被引量:2
9
作者 Xiaoming LI Junjie HUANG Youbin ZHOU 《Energy and Power Engineering》 2009年第1期1-6,共6页
The icing of transmission lines threatens the security of power system. This paper proposes a novel anti-icing method based on reducing voltage of the transmission lines. The line voltage can be reduced by regulating ... The icing of transmission lines threatens the security of power system. This paper proposes a novel anti-icing method based on reducing voltage of the transmission lines. The line voltage can be reduced by regulating the ratio of the transformers which install the both ends of the transmission lines. The line current can be increased and the power loss of the transmission lines can also be increased, which means the heat generated by power loss increases and the icing process of the transmission lines can be restrained. When the icing may occur in the atrocious weather, the anti-icing transformers installed the both ends of transmission line are put into operation. The ratios of transformers are regulated to the appropriate value. The current of transmission line can be increased to the value that is a little greater than the critical current, which can realize the purpose of anti-icing. At the same time, the conditions of normal running in the load side are kept invariably, which can ensure the security of power system. This method can be applicable to a wide range. It's an effective measure to prevent the icing of the transmission lines. 展开更多
关键词 anti-icing TRANSFORMER CRITICAL CURRENT
下载PDF
Super-hydrophobic film deposition by an atmospheric-pressure plasma process and its anti-icing characteristics 被引量:1
10
作者 黄清华 熊琳 +5 位作者 邓小龙 舒展 陈强 包兵 陈明礼 熊青 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第5期142-150,共9页
In this work,the super-hydrophobic(SH)surface was prepared through chemical vapor deposition process by an argon atmospheric pressure plasma jet source with HMDSN(hexamethyldisilazane)as the polymerization precursor.P... In this work,the super-hydrophobic(SH)surface was prepared through chemical vapor deposition process by an argon atmospheric pressure plasma jet source with HMDSN(hexamethyldisilazane)as the polymerization precursor.Plasma synthesized organosilicon(SiOxCyHz)thin films with water contact angle over 160°and sliding angle below 5°,were able to be achieved.FTIR and XPS analysis indicates a large number of hydrocarbon compositions were polymerized in the thin films enduing the latter very-low surface free energy.SEM shows the SH films display micro-nanostructure and with high degree of averaged surface roughness 190 nm evaluated by AFM analysis.From experiments under controlled low-temperature and moisture conditions,the prepared SH surface exhibits good anti-icing effects.Significantly prolonging freezing time was achievable on the SH thin films for both static and sliding water droplets.This investigation demonstrates the anti-icing potentials of SH surface prepared through low-cost simple atmospheric-pressure plasma polymerization process. 展开更多
关键词 HYDROPHOBICITY anti-icing ATMOSPHERIC-PRESSURE PLASMA POLYMERIZATION
下载PDF
Design and Development of Anti-Icing Aluminum Surface 被引量:1
11
作者 Yongxin Wang Daniel Orol +2 位作者 Jeffery Owens Katherine Simpson Hoon Joo Lee 《Materials Sciences and Applications》 2013年第6期347-356,共10页
An anti-icing surface has been designed and prepared with an aluminum panel by creating an artificial lotus leaf which is highly hydrophobic. The hydrophobicity of a solid surface can be generated by decreasing its su... An anti-icing surface has been designed and prepared with an aluminum panel by creating an artificial lotus leaf which is highly hydrophobic. The hydrophobicity of a solid surface can be generated by decreasing its surface tension and increasing the roughness of the surface. On a highly hydrophobic surface, water has a high contact angle and it can easily rolls off, carrying surface dirt and debris with it. Super-cooled water or freezing rain can also run off this highly hydrophobic surface instead of forming ice on the surface, due to the reduction of the liquid-solid adhesion. This property can also help a surface to get rid of the ice after the water becomes frozen. In this study, a Cassie-Baxter rough surface was modeled, and an aluminum panel was physically and chemically modified based on the modeled structure. Good agreement was found between predicted values and experimental results for the contact and roll-off angles of water. Most importantly, by creating this highly hydrophobic aluminum rough surface, the anti-icing and de-icing properties of the modified surface were drastically improved compared to the control aluminum surface, and the cost will be reduced. 展开更多
关键词 anti-icing DE-ICING WETTING HYDROPHOBIC ALUMINUM
下载PDF
An Abrasion Resistant TPU/SH-SiO_(2) Superhydrophobic Coating for Anti-Icing and Anti-Corrosion Applications
12
作者 Jiakun Shi Bizhu Zhang +4 位作者 Xin Zhou Runxian Liu Jun Hu Huaan Zheng Zhong Chen 《Journal of Renewable Materials》 SCIE EI 2022年第5期1239-1255,共17页
As a passive anti-icing strategy,properly designed superhydrophobic coatings can demonstrate outstanding performances.However,common preparation strategies for superhydrophobic coatings often lead to environmental pol... As a passive anti-icing strategy,properly designed superhydrophobic coatings can demonstrate outstanding performances.However,common preparation strategies for superhydrophobic coatings often lead to environmental pollution,high energy-consumption,high-cost and other undesirable issues.Besides,the durability of superhydrophobic coating also plagues its commercial application.In this paper,we introduced a facile and environment-friendly technique for fabricating abrasion-resistant superhydrophobic surfaces using thermoplastic polyurethane(TPU)and modified SiO_(2)particles(SH-SiO_(2)).Both materials are non-toxicity,low-cost,and commercial available.Our methodology has the following advantages:use of minimal amounts of formulation,take the most streamlined technical route,and no waste material.These advantages make it attractive for industrial applications,and its usage sustainability can be promised.In this study,the mechanical stability of the superhydrophobic surface was evaluated by linear wear test.It is found that the excellent wear resistance of the superhydrophobic coating benefits from the characteristics of raw materials,the preparation strategy,and the special structure.In anti-icing properties test,the TPU/SH-SiO_(2)coating exhibits the repellency to the cold droplets and the ability to extend the freezing time.The electrochemical corrosion measurement shows that the asprepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Q235 substrates.These results indicate that the TPU/SH-SiO_(2)coating possesses good abrasion resistance and has great potential in anti-corrosion and anti-icing applications. 展开更多
关键词 COATING SUPERHYDROPHOBIC abrasion resistance anti-icing anti-CORROSION
下载PDF
Numerical Study on Low-Reynolds Compressible Flows around Mars Helicopter Rotor Blade Airfoil
13
作者 Takuma Yamaguchi Masayuki Anyoji 《Journal of Flow Control, Measurement & Visualization》 CAS 2023年第2期30-48,共19页
High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. H... High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. However, the compressibility effect and shock wave generation associated with the increase in the Mach number (M) and the trend change due to their interference have not been clarified. The purpose is to clear the compressibility effect and its impact of shock wave generation on the flow field and aerodynamics. Therefore, we perform a two-dimensional unsteady calculation by Computational fluid dynamics (CFD) analysis using the CLF5605 airfoil used in the Mars helicopter Ingenuity, which succeeded in its first flight on Mars. The calculation conditions are set to the Reynolds number (Re) at 75% rotor span in hovering (Re = 15,400), and the Mach number was varied from incompressible (M = 0.2) to transonic (M = 1.2). The compressible fluid dynamics solver FaSTAR developed by the Japan aerospace exploration agency (JAXA) is used, and calculations are performed under multiple conditions in which the Mach number and angle of attack (α) are swept. The results show that a flow field is similar to that in the Earth’s atmosphere above M = 1.0, such as bow shock at the leading edge, whereas multiple λ-type shock waves are observed over the separated shear layer above α = 3° at M = 0.80. However, no significant difference is found in the C<sub>p</sub> distribution around the airfoil between M = 0.6 and M = 0.8. From the results, it is found that multiple λ-type shock waves have no significant effect on the airfoil surface pressure distribution, the separated shear layer effect is dominant in the surface pressure change and aerodynamic characteristics. 展开更多
关键词 CFD CLF5605 Rotor Blade airfoil Compressibility Effect Low-Reynolds Number Mars Helicopter Separation Bubble Shock Wave
下载PDF
Fourier neural operator with boundary conditions for efficient prediction of steady airfoil flows
14
作者 Yuanjun DAI Yiran AN +2 位作者 Zhi LI Jihua ZHANG Chao YU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第11期2019-2038,共20页
An efficient data-driven approach for predicting steady airfoil flows is proposed based on the Fourier neural operator(FNO),which is a new framework of neural networks.Theoretical reasons and experimental results are ... An efficient data-driven approach for predicting steady airfoil flows is proposed based on the Fourier neural operator(FNO),which is a new framework of neural networks.Theoretical reasons and experimental results are provided to support the necessity and effectiveness of the improvements made to the FNO,which involve using an additional branch neural operator to approximate the contribution of boundary conditions to steady solutions.The proposed approach runs several orders of magnitude faster than the traditional numerical methods.The predictions for flows around airfoils and ellipses demonstrate the superior accuracy and impressive speed of this novel approach.Furthermore,the property of zero-shot super-resolution enables the proposed approach to overcome the limitations of predicting airfoil flows with Cartesian grids,thereby improving the accuracy in the near-wall region.There is no doubt that the unprecedented speed and accuracy in forecasting steady airfoil flows have massive benefits for airfoil design and optimization. 展开更多
关键词 deep learning(DL) Fourier neural operator(FNO) steady airfoil flow
下载PDF
Design and Structure Optimization of Plenum Chamber with Airfoil Baffle to Improve Its Outlet Velocity Uniformity in Heat Setting Machines
15
作者 钱淼 魏鹏郦 +2 位作者 林子杰 向忠 胡旭东 《Journal of Donghua University(English Edition)》 CAS 2023年第5期515-524,共10页
The plenum chamber of a heat setting machine is a key structure for distributing hot air to different air channels.Its outlet velocity uniformity directly determines the heating uniformity of textiles,significantly af... The plenum chamber of a heat setting machine is a key structure for distributing hot air to different air channels.Its outlet velocity uniformity directly determines the heating uniformity of textiles,significantly affecting the heat setting performance.In a traditional heat setting machine,the outlet airflow maldistribution of the plenum chamber still exists.In this study,a novel plenum chamber with an airfoil baffle was established to improve the uniformity of the velocity distribution at the outlet in a heat setting machine.The structural influence of the plenum chamber on the velocity distribution was investigated using a computational fluid dynamics program.It was found that a chamber with a smaller outlet partition thickness had a better outlet velocity uniformity.The structural optimization of the plenum chamber was conducted using the particle swarm optimization algorithm.The outlet partition thickness,the transverse distance and the longitudinal distance of the optimized plenum chamber were 20,686.2 and 274.6 mm,respectively.Experiments were carried out.The experimental and simulated results showed that the optimized plenum chamber with an airfoil baffle could improve the outlet velocity uniformity.The air outlet velocity uniformity index of the optimized plenum chamber with an airfoil baffle was 4.75%higher than that of the plenum chamber without an airfoil baffle and 5.98%higher than that of the conventional chamber with a square baffle in a commercial heat setting machine. 展开更多
关键词 velocity distribution uniformity structure optimization numerical simulation airfoil plenum chamber heat setting
下载PDF
Optimized Design of H-Type Vertical Axis Wind Airfoil at Multiple Angles of Attack
16
作者 Chunyan Zhang Shuaishuai Wang +1 位作者 Yinhu Qiao Zhiqiang Zhang 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2661-2679,共19页
Numerical simulations are conducted to improve the energy acquisition efficiency of H-type vertical axis wind turbines through the optimization of the related blade airfoil aerodynamic performance.The Bézier curve... Numerical simulations are conducted to improve the energy acquisition efficiency of H-type vertical axis wind turbines through the optimization of the related blade airfoil aerodynamic performance.The Bézier curve is initi-ally used tofit the curve profile of a NACA2412 airfoil,and the moving asymptote algorithm is then exploited to optimize the design of the considered H-type vertical-axis wind-turbine blade airfoil for a certain attack angle.The results show that the maximum lift coefficient of the optimized airfoil is 8.33%higher than that of the original airfoil.The maximum lift-to-drag ratio of the optimized airfoil exceeds the maximum lift-to-drag ratio of the ori-ginal airfoil by 11.22%.Moreover,the power coefficient is increased by 12.19%and the torque coefficient of the wind turbine is significantly improved. 展开更多
关键词 H-type vertical axis wind turbine Bézier curves moving asymptote algorithm airfoil optimization
下载PDF
改变导叶翼型对水泵水轮机“S”特性的影响
17
作者 李琪飞 谢耕达 +1 位作者 韩天丁 李正贵 《排灌机械工程学报》 CSCD 北大核心 2024年第1期1-7,共7页
针对水泵水轮机“S”特性区域的不稳定性问题,提出使用改型活动导叶翼型进行性能提升.以某水泵水轮机模型为研究对象,采用SST k-ω湍流模型对水泵水轮机全流道进行三维数值计算,通过对活动导叶翼型的改型设计,得出流量-转速模拟曲线,分... 针对水泵水轮机“S”特性区域的不稳定性问题,提出使用改型活动导叶翼型进行性能提升.以某水泵水轮机模型为研究对象,采用SST k-ω湍流模型对水泵水轮机全流道进行三维数值计算,通过对活动导叶翼型的改型设计,得出流量-转速模拟曲线,分析水泵水轮机组“S”特性改善情况.将计算与试验结果进行对比,并对改型活动导叶翼型前后机组的无叶区进行压力脉动分析.结果表明:在保证整体效率依然保持在92%附近的前提下,新的活动导叶翼型对机组的“S”特性依旧具有改善效果;无叶区压力脉动主要是受到活动导叶叶栅区域的分流在此重新聚集影响,并且与转轮叶片的动静相互扰动引起的;改型后的活动导叶降低了无叶区的压力脉动幅值,提升了水泵水轮机运行中的并网稳定性. 展开更多
关键词 水泵水轮机 “S”特性曲线 活动导叶 翼型设计 数值计算
下载PDF
翼型叶片安装方式对粉煤灰气力输送的影响
18
作者 来永斌 岳凯 +1 位作者 王龙 李超群 《煤矿机械》 2024年第2期92-94,共3页
针对当前螺旋流气力输送中有关叶片安装方式的研究,分析了典型NACA系列翼型截面叶片应用于起旋装置时的流场。通过对观测面轴向流速与切向流速的仿真,计算叶片不同安装方式与安装角度时螺旋流场的旋流强度,确定了前缘迎风的安装方式比... 针对当前螺旋流气力输送中有关叶片安装方式的研究,分析了典型NACA系列翼型截面叶片应用于起旋装置时的流场。通过对观测面轴向流速与切向流速的仿真,计算叶片不同安装方式与安装角度时螺旋流场的旋流强度,确定了前缘迎风的安装方式比尾缘迎风起旋效果更强;安装方式固定时,旋流强度随安装角度的增大而减小。 展开更多
关键词 气力输送 螺旋流场 翼型 旋流数
下载PDF
风电NACA63418翼型参数化建模及优化
19
作者 张照煌 王丙申 贾晓娜 《热力发电》 CAS CSCD 北大核心 2024年第2期86-92,共7页
风力发电机的风轮气动效率与优良翼型的气动性能密切相关。以风力机传统翼型为研究对象,结合翼型参数化建模及自适应遗传算法,寻优搜索得到高性能优化翼型。比较了CST法和改进的Hicks-Henne型函数法对于NACA63418传统翼型的拟合精度,进... 风力发电机的风轮气动效率与优良翼型的气动性能密切相关。以风力机传统翼型为研究对象,结合翼型参数化建模及自适应遗传算法,寻优搜索得到高性能优化翼型。比较了CST法和改进的Hicks-Henne型函数法对于NACA63418传统翼型的拟合精度,进而选用Hicks-Henne型函数法对NACA63418翼型进行参数化建模。通过自适应遗传算法和XFOIL软件耦合实现翼型气动特性的自动计算,提高翼形的设计效率,为翼型的理论设计拓宽了思路。 展开更多
关键词 翼型 气动性能 参数化建模 自适应遗传算法
下载PDF
前缘圆柱对风力机翼型气动性能及冲蚀磨损影响研究
20
作者 李德顺 胡智豪 +2 位作者 赵慧廷 吴朝贵 范强强 《太阳能学报》 EI CAS CSCD 北大核心 2024年第4期166-173,共8页
为研究风沙环境下流动控制方式对于NACA 0012翼型气动性能和冲蚀磨损的影响,通过在风力机翼型前缘布置微小圆柱来控制气流流动,采用离散项模型和SST k-ω湍流模型对控制翼型进行数值计算。结果表明:攻角较小时,微小圆柱处于X=0.04、Y=-0... 为研究风沙环境下流动控制方式对于NACA 0012翼型气动性能和冲蚀磨损的影响,通过在风力机翼型前缘布置微小圆柱来控制气流流动,采用离散项模型和SST k-ω湍流模型对控制翼型进行数值计算。结果表明:攻角较小时,微小圆柱处于X=0.04、Y=-0.03位置时控制效果最佳,可抑制流动分离,相比原翼型升阻比提高149.72%;微小圆柱处于X=0.02、Y=-0.02位置时翼型冲蚀磨损的减小量最大,相比原翼型减小97.66%;微小圆柱处于最优区域时翼型升阻比提高的同时冲蚀磨损量也会减小。 展开更多
关键词 风力机 风沙环境 翼型 流动控制 磨损 气动性能 数值模拟
下载PDF
上一页 1 2 131 下一页 到第
使用帮助 返回顶部