Ultrasonic airlift loop reactor (UALR) shows potential and wide application for wastewater treatment. In this paper the performance and efficiency of UALR in dimethoate degradation were presented. The effects of O3 ...Ultrasonic airlift loop reactor (UALR) shows potential and wide application for wastewater treatment. In this paper the performance and efficiency of UALR in dimethoate degradation were presented. The effects of O3 flow rate, ultrasonic intensity and initial concentration of dimethoate on degradation rate were investigated. UALR imposed a synergistic effect combining sonochemical merit with high O3 transfer rate. The results showed that UALR not only increased degradation rate, but also was better than the simole sum of degradation by O3 and ultrasound separately. Under the operation conditions of O3 flow of 0.34 m^3·h^-1, ultrasonic intensity 3.71 W.cm^-2, and initial concentration of dimethoate at 20 mg·L^- 1, the degradation rate of dimethoate increased to 80%. UALR seems an advisable choice for treating organic wastewater and this process may have wide application prospect in industry.展开更多
In this paper, the principles of airlift loop reactor in gas-liquid and gas-liquid-solid systems are extended to gas-solid system. The models on bed average voidage in draft tube and the particle circulation velocity ...In this paper, the principles of airlift loop reactor in gas-liquid and gas-liquid-solid systems are extended to gas-solid system. The models on bed average voidage in draft tube and the particle circulation velocity in a gas-solid loop reactor are deduced. The experiments are also conducted on a Φ600mm×7000mm reactor. The catalyst voidage and catalyst circulation velocity are measured at different radial and axial positions in draft tube and annulus, respectively. The experimental data are analyzed systemically and represented satisfactorily by the proposed models.展开更多
Epoxidation of cyclohexene to cyclohexene oxide was studied in a new type reactor—the ultrasound airlift loop reactor. The influences of ultrasound intensity, molar ratio of isobutyraldehyde to cyclohexene and oxy-ge...Epoxidation of cyclohexene to cyclohexene oxide was studied in a new type reactor—the ultrasound airlift loop reactor. The influences of ultrasound intensity, molar ratio of isobutyraldehyde to cyclohexene and oxy-gen gas flow rate on the conversion of cyclohexene and selectivity of cyclohexene oxide were investigated and dis-cussed, and the optimal operation condition was found, under which 95.2% conversion of cyclohexene and 90.7% selectivity of cyclohexene oxide were achieved. The ultrasonic airlift loop reactor utilizes the synergistic effect of sonochemsitry and higher oxygen transfer rate. Possible reaction mechanisms were outlined and the reason of ul-trasound promotion of epoxidation reactionwas analyzed.展开更多
Based on the momentum theorem, the fluid governing equation in a lifting pipe is proposed by use of the method combining theoretical analysis with empirical correlations related to the previous research, and the perfo...Based on the momentum theorem, the fluid governing equation in a lifting pipe is proposed by use of the method combining theoretical analysis with empirical correlations related to the previous research, and the performance of an airlift pump can be clearly characterized by the triangular relationship among the volumetric flux of air, water and solid particles, which are obtained respectively by using numerical calculation. The meso-scale river sand is used as tested particles to examine the theoretical model. Results of the model are compared with the data in three-phase flow obtained prior to the development of the present model, by an independent experimental team that used the physical conditions of the present approach. The analytical error can be controlled within 12% for predicting the volumetric flux of water and is smaller than that (±16%) of transporting solid particles in three-phase flow. The experimental results and computations are in good agreement for air-water two-phase flow within a margin of ±8%. Reasonable agreement justifies the use of the present model for engineering design purposes.展开更多
A modified internal-loop airlif reactor (MIALR) with a continuous slurry phase was studied to investigate the local hydrodynamic characteristics, including gas holdup, bubble size, bubble rise velocity and local mas...A modified internal-loop airlif reactor (MIALR) with a continuous slurry phase was studied to investigate the local hydrodynamic characteristics, including gas holdup, bubble size, bubble rise velocity and local mass transfer properties. Based on the analysis of geometrical construction and fluid properties of gas and slurry, MIALR was divided into six flow regions. In these flow regions, the local hydrodynamic characteristics were investigated over a wide range of operating variables. Furthermore, a new method was developed to measure the dissolved oxygen concentration. The volumetric mass-transfer coefficient in six flow regions was also calculated for comparison.展开更多
Pneumatically agitated slurry reactors,including bubble column reactors and airlift loop reactors(ALRs),are important gas-liquid-solid multiphase reactors.These reactors have been widely applied in many processes,espe...Pneumatically agitated slurry reactors,including bubble column reactors and airlift loop reactors(ALRs),are important gas-liquid-solid multiphase reactors.These reactors have been widely applied in many processes,especially in the biological fermentation and energy chemical industry,due to their low shear stress,good mixing,perfect mass-/heat-transfer properties,and relatively low costs.To further improve the performance of slurry reactors(i.e.,mixing and mass/heat transfer)and to satisfy industrial require-ments(e.g.,temperature control,reduction of back-mixing,and product separation),the process intensi-fication of slurry reactors is essential.This article starts by reviewing the latest advancements in the intensification of mixing and mass/heat transfer in these two types of reactors.It then summarizes process-intensification methods for mixing and separation that allow continuous production in these slurry reactors.Process-intensification technology that integrates directional flow in an ALR with simple solid-liquid separation in a hydrocyclone is recommended for its high efficiency and low costs.This arti-cle also systematically addresses vital considerations and challenges,including flow regime discrimina-tion,gas spargers,solid particle effects,and other concerns in slurry reactors.It introduces the progress of numerical simulation using computational fluid dynamics(CFD)for the rational design of slurry reactors and discusses difficulties in modeling.Finally,it presents conclusions and perspectives on the design of industrial slurry reactors.展开更多
A slug flow model considering the dispersed bubbles entrained from the tail of Taylor bubble(TB) and recoalesced with the successive TB was proposed. Experiment was conducted to test the validity of this model by usin...A slug flow model considering the dispersed bubbles entrained from the tail of Taylor bubble(TB) and recoalesced with the successive TB was proposed. Experiment was conducted to test the validity of this model by using a high-speed camcorder and particle image velocimetry(PIV). It was found that the model was valid for predicting the characteristics of slug flow in airlift pump within average error of 14%. Moreover, large pipe diameter was found to accelerate the rise velocity of TB and decreases void fraction in liquid slug by a small margin.展开更多
Hydrodynamics of airlift loop reactors was studied in detail experimentally andtheoretically.An internal airlift loop reactor was designed and set up for this study.An instru-mentation system based on the electrochemi...Hydrodynamics of airlift loop reactors was studied in detail experimentally andtheoretically.An internal airlift loop reactor was designed and set up for this study.An instru-mentation system based on the electrochemical method was adapted to measure local gas holdup andliquid velocity.A two-dimensional two-fluid model based on the first principles was established andimplemented to model the flow in airlift loop reactors.A corrected turbulent model was incorporatedin the simulation.The shear rate,shear stress and energy dissipation are evaluated from the flowfield.The numerically predicted results and experimental data obtained from this work as well as thesereported in literature are analyzed and compared.展开更多
Shortcut nitrification for ammonium-rich wastewater is energy-saving and cost-effective procedure that has become one of the hotspots in the field of biological denitrogenation. An orthogonal experiment was performed ...Shortcut nitrification for ammonium-rich wastewater is energy-saving and cost-effective procedure that has become one of the hotspots in the field of biological denitrogenation. An orthogonal experiment was performed to study the combined effects of operational parameters on the performance of internal-loop airlift bioreactor for shortcut nitrification. The optimum operational parameters for the shortcut nitrification were fotmd as temperature 35 ℃, pH 8.0, dissolved oxygen concentration 1.0 mg/L, ammonium concentration 4 mmol/L and HRT 16 h, which have different influence on the performance of shortcut nitrification reactor. The pH, temperature and dissolved oxygen concentration have significant bearing on the process. The results showed that the shortcut nitrification reactor could be successfully started up within 42 d, and the reactor performance is steady with minimum NO2-/NOx- of 85.2%, maximum 93.4% and average value of 91.4% in effluent. Based on the analysis of experimental data, a new control strategy named “priority + combination” for shortcut nitrification was suggested. Through this strategy, the startup and operation of shortcut nitrification for ammonium-rich sludge digester liquids were optimized. The control strategy works well to keep the reactor operation in steady state and in achieving high-efficiency for shortcut nitrification.展开更多
Local hydrodynamics of a gas–liquid–solid system,such as bubble circulation regime,gas holdup,liquid velocity and axial profile of solid concentration,are studied in a two-stage internal loop airlift reactor.Empiric...Local hydrodynamics of a gas–liquid–solid system,such as bubble circulation regime,gas holdup,liquid velocity and axial profile of solid concentration,are studied in a two-stage internal loop airlift reactor.Empirical correlations for gas holdup and liquid velocity are proposed to ease the reactor design and scale-up.Different bubble circulation regimes were displayed in the first(lower) and second(upper) stages.Increasing superficial gas velocity and solid loading can promote regime transition of the second stage,and the gas holdup of the second stage is higher than that of the lower stage.In addition,the effects of solid loading on bubble behaviour are experimentally investigated for each stage.It is found that bubble size in the downcomer decreases with the presence of solid particles,and bubble size distribution widens under higher superficial gas velocity and lower solid loading.展开更多
Fermentation experiments to produce validamycins from crude substrates by Streptomyces hygroscopicus were carried out in an external-loop airlift bioreactor (0.0115 m^3 ) with a low ratio of height to diameter of the ...Fermentation experiments to produce validamycins from crude substrates by Streptomyces hygroscopicus were carried out in an external-loop airlift bioreactor (0.0115 m^3 ) with a low ratio of height to diameter of the riser of 2.9 and a ratio of riser to downcomer diameter of 6.6. The influences of gas flow rate and liquid volume on fermentation of validamycins were investigated. Comparisons of validamycin fermentation were made among the external-loop airlift bioreactor, a mechanically stirred tank bioreactor (0.010m^3 ) and shaking flasks. Under the same operation conditions including fermentation medium composition, inoculum ratio and culture temperature, the fermentation time in the external-loop airlift bioreactor (45 h) was shorter than that in the shaking flasks (100 h) and the same as that in the mechanically stirred tank bioreactor. After a total fermentation time of 45 h under optimized operation conditions, average validamycin concentration obtained in the external-loop airlift bioreactor was close to 19630 μg·ml^-1 validamycin concentration in the mechanically stirred tank bioreactor. It was demonstrated that the external-loop airlift bioreactor could substitute for the mechanically stirred tank bioreactor in production of validamycins from crude substrates with dregs by Streptomyces hygroscopicus.展开更多
Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-...Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-loop airlift reactor(AELAR)in the bubble flow and developing slug flow pattern. Experiments were performed by using tap-water and silicone oil with the viscosity of 2.0 mm^2/s(2cs-SiO)and 5.0 mm^2/s(5cs-SiO)as liquid phases. The effects of liquid viscosity and flow pattern on the AELAR performance were investigated. The predictions of the proposed model were in good agreement with the experimental results of the AELAR. In addition, the comparison of the experimental results shows that the proposed model has good accuracy and could be used to predict the gas holdup and liquid velocity of an AELAR operating in bubble and developing flow pattern.展开更多
Inter-phase mass transfer is important to the design and performance of airlift loop reactors for either chemical or biochemical applications, and a good measurement technique is crucial for studying mass transfer in ...Inter-phase mass transfer is important to the design and performance of airlift loop reactors for either chemical or biochemical applications, and a good measurement technique is crucial for studying mass transfer in multiphase systems. According to the model of macro-scale mass transfer in airlift loop reactors, it was proved that the airlift loop reactor can be regarded as a continuous stirred tank reactor for measuring mass transfer coefficient. The calculated mass transfer coefficient on such a basis is different from the volumetric mass transfer coefficient in the macro-scale model and the difference is discussed. To describe the time delay of the probe response to the change of oxygen concentration in the liquid phase, a model taking into account the time constant of response is es-tablished. Sensitivity analysis shows that this model can be used to measure the volumetric mass transfer coefficient. Applying this model to the measurement of volumetric mass transfer coefficient in the loop reactor, results that co-incide with the turbulence theory in the literate were obtained.展开更多
A new type of membrane bioreactor named 'airliftmembrane-bioreactor' is discussed. For municipal wastewaterreclamation, the preliminary study on airlift membrane-bioreactorshows its good performance such as hi...A new type of membrane bioreactor named 'airliftmembrane-bioreactor' is discussed. For municipal wastewaterreclamation, the preliminary study on airlift membrane-bioreactorshows its good performance such as higher flux and lower energyconsumption. The airlift membrane-bioreactor is potentiallyapplicable in bioengineer- ing and environmental protection fields.展开更多
Slurry reactors are popular in many industrial processes,involved with numerous chemical and biological mixtures,solid particles with different concentrations and properties,and a wide range of operating conditions.Th...Slurry reactors are popular in many industrial processes,involved with numerous chemical and biological mixtures,solid particles with different concentrations and properties,and a wide range of operating conditions.These factors can significantly affect the hydrodynamic in the slurry reactors,having remarkable effects on the design,scale-up,and operation of the slurry reactors.This article reviews the influences of fluid physical properties,solid particles,and operating conditions on the hydrodynamics in slurry reactors.Firstly,the influence of fluid properties,including the density and viscosity of the individual liquid and gas phases and the interfacial tension,has been reviewed.Secondly,the solid particle properties(i.e.,concentration,density,size,wettability,and shape)on the hydrodynamics have been discussed in detail,and some vital but often ignored features,especially the influences of particle wettability and shape,as well as the variation of surface tension because of solid concentration alteration,are highlighted in this work.Thirdly,the variations of physical properties of fluids,hydrodynamics,and bubble behavior resulted from the temperature and pressure variations are also summarized,and the indirect influences of pressure on viscosity and surface tension are addressed systematically.Finally,conclusions and perspectives of these notable influences on the design and scale-up of industrial slurry reactors are presented.展开更多
The external loop airlift reactor(ELALR)is widely used for gasliquid reactions.It’s advantage of good heat and mass transfer rates compared to conventional bubble column reactors.In the case of fermentation applicati...The external loop airlift reactor(ELALR)is widely used for gasliquid reactions.It’s advantage of good heat and mass transfer rates compared to conventional bubble column reactors.In the case of fermentation application where a medium is highly viscous and coalescing in nature,internal in riser helps in the improvement of the interfacial area as well as in the reduction of liquidphase back mixing.The computational fluid dynamic(CFD)as a tool is used to design and scaleup of sectionalized external loop airlift reactor.The present work deals with computational fluid dynamics(CFD)techniques and experimental measurement of a gas holdup,liquid circulation velocity,liquid axial velocity,Sauter mean bubble diameter over a broad range of superficial gas velocity 0.0024≤UG≤0.0168 m s 1.The correlation has been made for bubble size distribution with specific power consumption for different plate configurations.The effects of an internal on different mass transfer models have been completed to assess their suitability.The predicted local mass transfer coefficient has been found higher in the sectionalized external loop airlift reactor than the conventional ELALR.展开更多
New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reacto...New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reactor. The pores blocking models were created based on the standard blocking law and the intermediate blocking law, and then the cake layer models were developed based on the hydrodynamic theory in which the calculation method of porosity of cake layer was newly corrected. The Air-Water-FCC equilibrium catalysts cold model experiment was used to verify the relevant models.Results showed that the calculated values fitted well with experimental data with a relative error of less than 10%.展开更多
In this paper, a 2-D airlift reactor was developed. The streamline and hydrodynamic parameters were measured in a 2-D airlift loop reactor(ALR)with different draft baffles. Three regimes were observed under different ...In this paper, a 2-D airlift reactor was developed. The streamline and hydrodynamic parameters were measured in a 2-D airlift loop reactor(ALR)with different draft baffles. Three regimes were observed under different conditions. Particle image velocimetry(PIV)measurement showed that the liquid velocity distribution in horizontal direction presented different profiles in the three regimes. The length, the height and the spacing of draft baffles were applied in the experiments to optimize the ALR structure. It was found that the draft tube structure is of great importance in determining the hydrodynamics of ALRs. Additionally, the experimental results may serve as a step to the further optimization and design of ALR.展开更多
Oilfield produced water is large quantities of salty water trapped in underground formations and subsisted under high temperatures and pressures that are brought to the surface along with oil during production. Produc...Oilfield produced water is large quantities of salty water trapped in underground formations and subsisted under high temperatures and pressures that are brought to the surface along with oil during production. Produced water(PW) contains a lot of pollutants such as hydrocarbons and metals, this water must be treated before disposal. Therefore, different techniques are being used to treat produced water. Electrocoagulation is an efficient treatment technique involving the dissolution of anodes and formation of electro-coagulants, while the simultaneous generation of H_2 bubbles at the cathode leads to the pollutant removal by flotation. Electrocoagulation(EC)method is one of the most promising and widely used processes to treat oilfield produced water. In the present work, a conventional internal-loop(draught tube) airlift reactor was utilized as electrocoagulation/flotation cell for PW treatment by inserting two aluminum electrodes in the riser section of the airlift reactor. The EC airlift reactor was operated in a batch mode for the liquid phase. Different experimental parameters were studied on the oil and turbidity removal efficiencies such as current density, initial pH, electrocoagulation time, and air injection.The experimental results showed that mixing of the oil droplets in the PW was accomplished using only the liquid recirculation resulted by H_2 microbubbles generated by EC process which enhanced the oil removal. The experimental results further showed that the EC time required achieving ≥ 90% oil removal efficiency decreases from 46 to 15 min when operating current density increases from 6.8 to 45.5 mA·cm^(-2). This reactor type was found to be highly efficient and less energy consuming compared to conventional existing electrochemical cells which used mechanical agitation.展开更多
Removal of inorganic nitrogen (inorganic-N) from toilet wastewater, using a pilot-scale airlift external circulation membrane bioreactor (AEC-MBR) was studied. The results showed that the use of AEC-MBR with limit...Removal of inorganic nitrogen (inorganic-N) from toilet wastewater, using a pilot-scale airlift external circulation membrane bioreactor (AEC-MBR) was studied. The results showed that the use of AEC-MBR with limited addition of alkaline reagents and volumetric loading rates of inorganic-N of 0.19-0.40 kg inorganic-N/(m^3·d) helped achieve the desired nitrification and denitrification. Furthermore, the effects of pH and dissolved oxygen (DO) on inorganic-N removal were examined. Under the condition of MLSS at 1.56-2.35 g/L, BODs/ammonia nitrogen (NH4+-N) at 1.0, pH at 7.0-7.5, and DO at 1.0-2.0 mg/L, the removal efficiencies of NH4^+-N and inorganic-N were 91.5% and 70.0%, respectively, in the AEC-MBR. The cost of addition of alkaline reagent was approximately 0.5-1.5 RMB yuan/m^3, and the energy consumption was approximately 0.72 kWh/m^3 at the flux of 8 L/(m^2-h).展开更多
文摘Ultrasonic airlift loop reactor (UALR) shows potential and wide application for wastewater treatment. In this paper the performance and efficiency of UALR in dimethoate degradation were presented. The effects of O3 flow rate, ultrasonic intensity and initial concentration of dimethoate on degradation rate were investigated. UALR imposed a synergistic effect combining sonochemical merit with high O3 transfer rate. The results showed that UALR not only increased degradation rate, but also was better than the simole sum of degradation by O3 and ultrasound separately. Under the operation conditions of O3 flow of 0.34 m^3·h^-1, ultrasonic intensity 3.71 W.cm^-2, and initial concentration of dimethoate at 20 mg·L^- 1, the degradation rate of dimethoate increased to 80%. UALR seems an advisable choice for treating organic wastewater and this process may have wide application prospect in industry.
文摘In this paper, the principles of airlift loop reactor in gas-liquid and gas-liquid-solid systems are extended to gas-solid system. The models on bed average voidage in draft tube and the particle circulation velocity in a gas-solid loop reactor are deduced. The experiments are also conducted on a Φ600mm×7000mm reactor. The catalyst voidage and catalyst circulation velocity are measured at different radial and axial positions in draft tube and annulus, respectively. The experimental data are analyzed systemically and represented satisfactorily by the proposed models.
基金Supported by Qinglan Project Foundation of Jiangsu Province and Doctoral Dissertation Innovate Foundation of Nanjing Uni-versity of Technology (No.BSCS200508).
文摘Epoxidation of cyclohexene to cyclohexene oxide was studied in a new type reactor—the ultrasound airlift loop reactor. The influences of ultrasound intensity, molar ratio of isobutyraldehyde to cyclohexene and oxy-gen gas flow rate on the conversion of cyclohexene and selectivity of cyclohexene oxide were investigated and dis-cussed, and the optimal operation condition was found, under which 95.2% conversion of cyclohexene and 90.7% selectivity of cyclohexene oxide were achieved. The ultrasonic airlift loop reactor utilizes the synergistic effect of sonochemsitry and higher oxygen transfer rate. Possible reaction mechanisms were outlined and the reason of ul-trasound promotion of epoxidation reactionwas analyzed.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51374101 and 51474158)the National Basic Research Program of China(973 Program,Grant No.2014CB239203)the Scientific Research Project of Education Department of Hunan Province(Grant No.14B047)
文摘Based on the momentum theorem, the fluid governing equation in a lifting pipe is proposed by use of the method combining theoretical analysis with empirical correlations related to the previous research, and the performance of an airlift pump can be clearly characterized by the triangular relationship among the volumetric flux of air, water and solid particles, which are obtained respectively by using numerical calculation. The meso-scale river sand is used as tested particles to examine the theoretical model. Results of the model are compared with the data in three-phase flow obtained prior to the development of the present model, by an independent experimental team that used the physical conditions of the present approach. The analytical error can be controlled within 12% for predicting the volumetric flux of water and is smaller than that (±16%) of transporting solid particles in three-phase flow. The experimental results and computations are in good agreement for air-water two-phase flow within a margin of ±8%. Reasonable agreement justifies the use of the present model for engineering design purposes.
文摘A modified internal-loop airlif reactor (MIALR) with a continuous slurry phase was studied to investigate the local hydrodynamic characteristics, including gas holdup, bubble size, bubble rise velocity and local mass transfer properties. Based on the analysis of geometrical construction and fluid properties of gas and slurry, MIALR was divided into six flow regions. In these flow regions, the local hydrodynamic characteristics were investigated over a wide range of operating variables. Furthermore, a new method was developed to measure the dissolved oxygen concentration. The volumetric mass-transfer coefficient in six flow regions was also calculated for comparison.
基金supported by the National Key Research and Development Program of China(2016YFB0301701)the National Natural Science Foundation of China(21808234,21878318,and 21938009)+3 种基金the DNL Cooperation Fund,Chinese Academy of Sciences(CAS)(DNL201902)the Strategic Priority Research Program of the CAS(XDA21060400)the QIBEBT and Dalian National Laboratory for Clean Energy of the CAS(QIBEBT ZZBS201803 and QIBEBT I201907)the CAS Key Technology Talent Program.
文摘Pneumatically agitated slurry reactors,including bubble column reactors and airlift loop reactors(ALRs),are important gas-liquid-solid multiphase reactors.These reactors have been widely applied in many processes,especially in the biological fermentation and energy chemical industry,due to their low shear stress,good mixing,perfect mass-/heat-transfer properties,and relatively low costs.To further improve the performance of slurry reactors(i.e.,mixing and mass/heat transfer)and to satisfy industrial require-ments(e.g.,temperature control,reduction of back-mixing,and product separation),the process intensi-fication of slurry reactors is essential.This article starts by reviewing the latest advancements in the intensification of mixing and mass/heat transfer in these two types of reactors.It then summarizes process-intensification methods for mixing and separation that allow continuous production in these slurry reactors.Process-intensification technology that integrates directional flow in an ALR with simple solid-liquid separation in a hydrocyclone is recommended for its high efficiency and low costs.This arti-cle also systematically addresses vital considerations and challenges,including flow regime discrimina-tion,gas spargers,solid particle effects,and other concerns in slurry reactors.It introduces the progress of numerical simulation using computational fluid dynamics(CFD)for the rational design of slurry reactors and discusses difficulties in modeling.Finally,it presents conclusions and perspectives on the design of industrial slurry reactors.
基金Supported by the National Key Basic Research Development Program of China(2014CB239200)the National Natural Science Foundation of China(51574173,51705372)+1 种基金the Hubei Provincial Natural Science Foundation(2015CFA154)Jiangsu Provincial Natural Science Foundation of China(No.BK20170411)
文摘A slug flow model considering the dispersed bubbles entrained from the tail of Taylor bubble(TB) and recoalesced with the successive TB was proposed. Experiment was conducted to test the validity of this model by using a high-speed camcorder and particle image velocimetry(PIV). It was found that the model was valid for predicting the characteristics of slug flow in airlift pump within average error of 14%. Moreover, large pipe diameter was found to accelerate the rise velocity of TB and decreases void fraction in liquid slug by a small margin.
基金Supported by the National Natural Science Foundation of China.
文摘Hydrodynamics of airlift loop reactors was studied in detail experimentally andtheoretically.An internal airlift loop reactor was designed and set up for this study.An instru-mentation system based on the electrochemical method was adapted to measure local gas holdup andliquid velocity.A two-dimensional two-fluid model based on the first principles was established andimplemented to model the flow in airlift loop reactors.A corrected turbulent model was incorporatedin the simulation.The shear rate,shear stress and energy dissipation are evaluated from the flowfield.The numerically predicted results and experimental data obtained from this work as well as thesereported in literature are analyzed and compared.
文摘Shortcut nitrification for ammonium-rich wastewater is energy-saving and cost-effective procedure that has become one of the hotspots in the field of biological denitrogenation. An orthogonal experiment was performed to study the combined effects of operational parameters on the performance of internal-loop airlift bioreactor for shortcut nitrification. The optimum operational parameters for the shortcut nitrification were fotmd as temperature 35 ℃, pH 8.0, dissolved oxygen concentration 1.0 mg/L, ammonium concentration 4 mmol/L and HRT 16 h, which have different influence on the performance of shortcut nitrification reactor. The pH, temperature and dissolved oxygen concentration have significant bearing on the process. The results showed that the shortcut nitrification reactor could be successfully started up within 42 d, and the reactor performance is steady with minimum NO2-/NOx- of 85.2%, maximum 93.4% and average value of 91.4% in effluent. Based on the analysis of experimental data, a new control strategy named “priority + combination” for shortcut nitrification was suggested. Through this strategy, the startup and operation of shortcut nitrification for ammonium-rich sludge digester liquids were optimized. The control strategy works well to keep the reactor operation in steady state and in achieving high-efficiency for shortcut nitrification.
基金Supported by the State Key Laboratory of Chemical Engineering(SKL-ChE-16B01)China Postdoctoral Science Foundation(2016M601263)
文摘Local hydrodynamics of a gas–liquid–solid system,such as bubble circulation regime,gas holdup,liquid velocity and axial profile of solid concentration,are studied in a two-stage internal loop airlift reactor.Empirical correlations for gas holdup and liquid velocity are proposed to ease the reactor design and scale-up.Different bubble circulation regimes were displayed in the first(lower) and second(upper) stages.Increasing superficial gas velocity and solid loading can promote regime transition of the second stage,and the gas holdup of the second stage is higher than that of the lower stage.In addition,the effects of solid loading on bubble behaviour are experimentally investigated for each stage.It is found that bubble size in the downcomer decreases with the presence of solid particles,and bubble size distribution widens under higher superficial gas velocity and lower solid loading.
基金Supported by the Natural Science Foundation of Zhejiang Province (No. ZB0106)the National Natural Science Foundation of China (No. 20176055).
文摘Fermentation experiments to produce validamycins from crude substrates by Streptomyces hygroscopicus were carried out in an external-loop airlift bioreactor (0.0115 m^3 ) with a low ratio of height to diameter of the riser of 2.9 and a ratio of riser to downcomer diameter of 6.6. The influences of gas flow rate and liquid volume on fermentation of validamycins were investigated. Comparisons of validamycin fermentation were made among the external-loop airlift bioreactor, a mechanically stirred tank bioreactor (0.010m^3 ) and shaking flasks. Under the same operation conditions including fermentation medium composition, inoculum ratio and culture temperature, the fermentation time in the external-loop airlift bioreactor (45 h) was shorter than that in the shaking flasks (100 h) and the same as that in the mechanically stirred tank bioreactor. After a total fermentation time of 45 h under optimized operation conditions, average validamycin concentration obtained in the external-loop airlift bioreactor was close to 19630 μg·ml^-1 validamycin concentration in the mechanically stirred tank bioreactor. It was demonstrated that the external-loop airlift bioreactor could substitute for the mechanically stirred tank bioreactor in production of validamycins from crude substrates with dregs by Streptomyces hygroscopicus.
基金Supported by the National Natural Science Foundation of China(No.51478297)Program of Introducing Talents of Discipline(No.B13011)
文摘Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-loop airlift reactor(AELAR)in the bubble flow and developing slug flow pattern. Experiments were performed by using tap-water and silicone oil with the viscosity of 2.0 mm^2/s(2cs-SiO)and 5.0 mm^2/s(5cs-SiO)as liquid phases. The effects of liquid viscosity and flow pattern on the AELAR performance were investigated. The predictions of the proposed model were in good agreement with the experimental results of the AELAR. In addition, the comparison of the experimental results shows that the proposed model has good accuracy and could be used to predict the gas holdup and liquid velocity of an AELAR operating in bubble and developing flow pattern.
基金Supported by the Specialized Research Fund for the Program of Higher Education (No.20050003030) and byTsinghua-Zhongda Postdoctoral Fellowship Program (No.20283600131).
文摘Inter-phase mass transfer is important to the design and performance of airlift loop reactors for either chemical or biochemical applications, and a good measurement technique is crucial for studying mass transfer in multiphase systems. According to the model of macro-scale mass transfer in airlift loop reactors, it was proved that the airlift loop reactor can be regarded as a continuous stirred tank reactor for measuring mass transfer coefficient. The calculated mass transfer coefficient on such a basis is different from the volumetric mass transfer coefficient in the macro-scale model and the difference is discussed. To describe the time delay of the probe response to the change of oxygen concentration in the liquid phase, a model taking into account the time constant of response is es-tablished. Sensitivity analysis shows that this model can be used to measure the volumetric mass transfer coefficient. Applying this model to the measurement of volumetric mass transfer coefficient in the loop reactor, results that co-incide with the turbulence theory in the literate were obtained.
文摘A new type of membrane bioreactor named 'airliftmembrane-bioreactor' is discussed. For municipal wastewaterreclamation, the preliminary study on airlift membrane-bioreactorshows its good performance such as higher flux and lower energyconsumption. The airlift membrane-bioreactor is potentiallyapplicable in bioengineer- ing and environmental protection fields.
基金supported by the National Natural Science Foundation of China(2187831821808234)+5 种基金the Dalian National Laboratory for Clean Energy Cooperation Fund,CAS(DNL201902)“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(CAS)(XDA21060400)Qingdao Institute of Bioenergy and Bioprocess Technology(QIBEBT)and Dalian National Laboratory for Clean Energy(DNL)of CAS(QIBEBT ZZBS201803QIBEBT I201907)Director Innovation Fund of Synthetic Biology Technology Innovation Center of Shandong Province(sdsynbio-2020-ZH02)Project of CNPC-DICP Joint Research Center。
文摘Slurry reactors are popular in many industrial processes,involved with numerous chemical and biological mixtures,solid particles with different concentrations and properties,and a wide range of operating conditions.These factors can significantly affect the hydrodynamic in the slurry reactors,having remarkable effects on the design,scale-up,and operation of the slurry reactors.This article reviews the influences of fluid physical properties,solid particles,and operating conditions on the hydrodynamics in slurry reactors.Firstly,the influence of fluid properties,including the density and viscosity of the individual liquid and gas phases and the interfacial tension,has been reviewed.Secondly,the solid particle properties(i.e.,concentration,density,size,wettability,and shape)on the hydrodynamics have been discussed in detail,and some vital but often ignored features,especially the influences of particle wettability and shape,as well as the variation of surface tension because of solid concentration alteration,are highlighted in this work.Thirdly,the variations of physical properties of fluids,hydrodynamics,and bubble behavior resulted from the temperature and pressure variations are also summarized,and the indirect influences of pressure on viscosity and surface tension are addressed systematically.Finally,conclusions and perspectives of these notable influences on the design and scale-up of industrial slurry reactors are presented.
文摘The external loop airlift reactor(ELALR)is widely used for gasliquid reactions.It’s advantage of good heat and mass transfer rates compared to conventional bubble column reactors.In the case of fermentation application where a medium is highly viscous and coalescing in nature,internal in riser helps in the improvement of the interfacial area as well as in the reduction of liquidphase back mixing.The computational fluid dynamic(CFD)as a tool is used to design and scaleup of sectionalized external loop airlift reactor.The present work deals with computational fluid dynamics(CFD)techniques and experimental measurement of a gas holdup,liquid circulation velocity,liquid axial velocity,Sauter mean bubble diameter over a broad range of superficial gas velocity 0.0024≤UG≤0.0168 m s 1.The correlation has been made for bubble size distribution with specific power consumption for different plate configurations.The effects of an internal on different mass transfer models have been completed to assess their suitability.The predicted local mass transfer coefficient has been found higher in the sectionalized external loop airlift reactor than the conventional ELALR.
基金financially supported by the National Key Research & Development Program of China (2016YFB0301600)
文摘New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reactor. The pores blocking models were created based on the standard blocking law and the intermediate blocking law, and then the cake layer models were developed based on the hydrodynamic theory in which the calculation method of porosity of cake layer was newly corrected. The Air-Water-FCC equilibrium catalysts cold model experiment was used to verify the relevant models.Results showed that the calculated values fitted well with experimental data with a relative error of less than 10%.
基金Supported by the National Natural Science Foundation of China(No.21406157)
文摘In this paper, a 2-D airlift reactor was developed. The streamline and hydrodynamic parameters were measured in a 2-D airlift loop reactor(ALR)with different draft baffles. Three regimes were observed under different conditions. Particle image velocimetry(PIV)measurement showed that the liquid velocity distribution in horizontal direction presented different profiles in the three regimes. The length, the height and the spacing of draft baffles were applied in the experiments to optimize the ALR structure. It was found that the draft tube structure is of great importance in determining the hydrodynamics of ALRs. Additionally, the experimental results may serve as a step to the further optimization and design of ALR.
文摘Oilfield produced water is large quantities of salty water trapped in underground formations and subsisted under high temperatures and pressures that are brought to the surface along with oil during production. Produced water(PW) contains a lot of pollutants such as hydrocarbons and metals, this water must be treated before disposal. Therefore, different techniques are being used to treat produced water. Electrocoagulation is an efficient treatment technique involving the dissolution of anodes and formation of electro-coagulants, while the simultaneous generation of H_2 bubbles at the cathode leads to the pollutant removal by flotation. Electrocoagulation(EC)method is one of the most promising and widely used processes to treat oilfield produced water. In the present work, a conventional internal-loop(draught tube) airlift reactor was utilized as electrocoagulation/flotation cell for PW treatment by inserting two aluminum electrodes in the riser section of the airlift reactor. The EC airlift reactor was operated in a batch mode for the liquid phase. Different experimental parameters were studied on the oil and turbidity removal efficiencies such as current density, initial pH, electrocoagulation time, and air injection.The experimental results showed that mixing of the oil droplets in the PW was accomplished using only the liquid recirculation resulted by H_2 microbubbles generated by EC process which enhanced the oil removal. The experimental results further showed that the EC time required achieving ≥ 90% oil removal efficiency decreases from 46 to 15 min when operating current density increases from 6.8 to 45.5 mA·cm^(-2). This reactor type was found to be highly efficient and less energy consuming compared to conventional existing electrochemical cells which used mechanical agitation.
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No. 2002AA601220)
文摘Removal of inorganic nitrogen (inorganic-N) from toilet wastewater, using a pilot-scale airlift external circulation membrane bioreactor (AEC-MBR) was studied. The results showed that the use of AEC-MBR with limited addition of alkaline reagents and volumetric loading rates of inorganic-N of 0.19-0.40 kg inorganic-N/(m^3·d) helped achieve the desired nitrification and denitrification. Furthermore, the effects of pH and dissolved oxygen (DO) on inorganic-N removal were examined. Under the condition of MLSS at 1.56-2.35 g/L, BODs/ammonia nitrogen (NH4+-N) at 1.0, pH at 7.0-7.5, and DO at 1.0-2.0 mg/L, the removal efficiencies of NH4^+-N and inorganic-N were 91.5% and 70.0%, respectively, in the AEC-MBR. The cost of addition of alkaline reagent was approximately 0.5-1.5 RMB yuan/m^3, and the energy consumption was approximately 0.72 kWh/m^3 at the flux of 8 L/(m^2-h).