为了满足结构件的一体式、轻量级以及专属定制的要求,笔者对激光熔化沉积(laser metal deposition,LMD)成形Al-12Si合金激光工艺参数进行了摸索,优化激光成形参数;在此基础之上,开展激光熔化沉积成形实验,通过金相分析、扫描电子显微镜(...为了满足结构件的一体式、轻量级以及专属定制的要求,笔者对激光熔化沉积(laser metal deposition,LMD)成形Al-12Si合金激光工艺参数进行了摸索,优化激光成形参数;在此基础之上,开展激光熔化沉积成形实验,通过金相分析、扫描电子显微镜(scanning electron microscope,SEM)等表征手段对激光熔化沉积制备Al-12Si合金显微组织进行表征。结果表明:在激光功率700~800 W、激光扫描速度为300~360 mm/min的工艺参数下能够获得高度致密的Al-12Si合金。激光熔化沉积Al-12Si合金成形工艺的研究旨在克服传统制造方式的局限性,通过科学的方法优化工艺参数并改善成形质量,最终获得高质量且性能优异的Al-12Si合金部件。展开更多
Green and low carbon promote the application and development of light-weight materials in body-in-white. Large-scale die-casting Al alloy (DCAA) and high-strength thermo-formed steel sheet (TFSS) have put forward high...Green and low carbon promote the application and development of light-weight materials in body-in-white. Large-scale die-casting Al alloy (DCAA) and high-strength thermo-formed steel sheet (TFSS) have put forward higher requirements for the application of joining technology of high-strength steel/Al dissimilar materials. Taking the new die-casting Al alloy body as an example, this paper systematically studies the progress of the latest joining methods of steel/Al dissimilar material with combination of two-layer plate and three-layer plate. By analyzing the joining technologies such as FSPR, RES, FDS and SPR, the technology and process characteristics of steel/Al dissimilar material joining are studied, and the joining technical feasibility and realization means of different material combination of the body are analyzed. The conditions of material combination, material thickness, material strength, flange height, preformed holes and joint spacing for achieving high-quality joining are given. The FSPR joining technology is developed and tested in order to meet with the joining of parts with DCAA and TFSS, especially for the joining of three-layer plates with them. It finds the method and technical basis for the realization of high quality joining of dissimilar materials, provides the early conditions for the application of large DCAA and TFSS parts in body-in-white, and meets the design requirements of new energy body. .展开更多
High strength Al Zn Mg Cu alloys were produced by spray forming process, and compacted by hot extrusion. The results show that the as deposited billets have fine grained microstructure and low porosity. After heat tre...High strength Al Zn Mg Cu alloys were produced by spray forming process, and compacted by hot extrusion. The results show that the as deposited billets have fine grained microstructure and low porosity. After heat treatment, mechanical properties increase greatly: tensile strength up to 754 MPa, yield strength up to 722 MPa, fracture elongation up to 8%, and elastic modulus up to 72 GPa, respectively. [展开更多
Microstructural evolution and phase transformation induced by different heat treatments of the hypereutectic aluminium-silicon alloy, Al-25Si-5Fe-3Cu (wt%, signed as 3C), fabricated by traditional cast (TC) and sp...Microstructural evolution and phase transformation induced by different heat treatments of the hypereutectic aluminium-silicon alloy, Al-25Si-5Fe-3Cu (wt%, signed as 3C), fabricated by traditional cast (TC) and spray forming (SF) processes, were investigated by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy and X-ray diffraction techniques. The results show that A17Cu2Fe phase can be formed and transformed in TC- and SF-3C alloys between 802-813 K and 800-815 K, respectively. The transformation from β-Al5FeSi to δ-Al4FeSi2 phase via peritectic reaction can occur at around 858-870 K and 876-890 K in TC- and SF-3C alloys, respectively. The starting precipitation temperature of δ-Al4FeSi2 phase as the dominant Fe-bearing phase in the TC-3C alloy is 997 K and the exothermic peak about the peritectic transformation of δ-Al4FeSi2→β-Al5FeSi is not detected in the present DSC experiments. Also, the mechanisms of the microstructural evolution and phase transformation are discussed.展开更多
A self-made single-roll stirring (SRS) machine was used to manufacturesemisolid A2017 alloy, the mechanism of A2017 alloy formation was investigated. It was shown thatA2017 dendrites growing on the rough roll surface ...A self-made single-roll stirring (SRS) machine was used to manufacturesemisolid A2017 alloy, the mechanism of A2017 alloy formation was investigated. It was shown thatA2017 dendrites growing on the rough roll surface are crashed into fragments by the roll, which moveand grow freely then contribute the formation of finer spherical microstruc-ture. When casting at710-750℃, fine and homogeneous spherical or elliptical grains of A2017 alloy were obtained.Extending forming mould has been designed and was installed at the exit of roll-shoe gap. A2017alloy was formed by extending continuously at the semisolid state on SRS machine. Throughcontrolling pouring temperature, semisolid forming and extending extrusion was combined organically.A2017 product with fine surface and rectangular transection of 14 mm x 25 mm was obtained. Bycontrast to the national standard, the fracture strength and elongation of A2017 products producedfrom extending semisolid extrusion have been improved with an increase of 100 MPa and 29%,respectively.展开更多
The grain growth behavior of spray-formed Al-70wt.%Si alloys was studied in the semi-solid state. The specimens were isothermally heat-treated at various temperatures between the solidus and liquidus of Al-Si alloys a...The grain growth behavior of spray-formed Al-70wt.%Si alloys was studied in the semi-solid state. The specimens were isothermally heat-treated at various temperatures between the solidus and liquidus of Al-Si alloys and then quenched in water. The microstructure of reheated specimens was characterized using optical and scanning electron microscopies. The isothermal holding experiment was carried out to investigate grain growth behavior as a function of holding time and temperature in the semi-solid state. The coarsening mechanism and the effect of porosity on microstructure were also studied.展开更多
The effect of temperature distribution on warm forming performance was investigated for 5083-O (Al-Mg) sheet metal blanks. Combined isothermal/non-isothermal FEA with design of experiments tools were used to predict a...The effect of temperature distribution on warm forming performance was investigated for 5083-O (Al-Mg) sheet metal blanks. Combined isothermal/non-isothermal FEA with design of experiments tools were used to predict appropriate warm forming temperature conditions for deep drawing and two-dimensional stamping cases. In the investigated temperature range of 25?250 ℃, the formability of Al-5083 alloy is found to be greatly dependent on the temperature distribution of the die and punch. To achieve increased degrees of forming, different temperature levels should be assigned to the corner and body of the die and punch. And the optimal temperature distributions for warm deep drawing and warm two-dimensional stamping are not identical.展开更多
A novel Si-Al alloy was prepared by spray forming process for electronic packaging. Property measurements on spray-formed Si-Al alloys after hot pressing were carried out. The results indicate that the alloys (Si-(30%...A novel Si-Al alloy was prepared by spray forming process for electronic packaging. Property measurements on spray-formed Si-Al alloys after hot pressing were carried out. The results indicate that the alloys (Si-(30%-40%)Al) have advantageous physical and mechanical characteristics, including low coefficient of thermal expansion (6.9×10-6-8.7×10-6/K), high thermal conductivity (118-127 W/(m·K)), low density (2.421×103-2.465×103 kg/m3), high ultimate flexural strength (180-220 MPa) and Brinell hardness (162261). The alloys are easy to machine to tight tolerances using standard machine tools and they can be electroplated with gold finishes and soldered with Sn-Pb alloy without any difficulty.展开更多
Based on the characteristics of 3D bulk forming process, the arbitrary Lagrangian-Eulerian (ALE) formulation-based FEM is studied, and a prediction-correction ALE-based FEM is proposed which integrates the advantages ...Based on the characteristics of 3D bulk forming process, the arbitrary Lagrangian-Eulerian (ALE) formulation-based FEM is studied, and a prediction-correction ALE-based FEM is proposed which integrates the advantages of precisely predicting the boundary configuration of the deformed material, and of efficiently avoiding hexahedron remeshing processes. The key idea of the prediction-correction ALE FEM is elaborated in detail. Accordingly, the strategy of mesh quality control, one of the key enabling techniques for the 3D bulk forming process numerical simulation by the prediction-correction ALE FEM is carefully investigated, and the algorithm for hexahedral element refinement is formulated based on the mesh distortion energy.展开更多
The microstructure and aging behavior of spray formed Al-Zn-Mg-Cu alloys were investigated as a function of alloying element addition. It is revealed that the grains of the as-deposited alloys are refined with increas...The microstructure and aging behavior of spray formed Al-Zn-Mg-Cu alloys were investigated as a function of alloying element addition. It is revealed that the grains of the as-deposited alloys are refined with increasing Zn element, while the function of Ni addition is to reduce grain boundary particles and eutectic in the as-extruded condition. Particles containing Mg and Zn are found to increase with Zn content increasing, while the role of Ni is to reduce both the number and size of these particles. After uniform heat treatment, parts of educts in grain boundary have melted and the grains have not grown up obviously. After heat extrusion, the microstructure becomes denser and there are many precipitated phases in cross-section while there are second phase arranging along extruded direction in longitudinal section. During artificial aging, the increment of Zn content produces not much effect on peak hardness, in addition to an accelerated overage softening. An addition of about 0.13%Ni, however, gives rise to not only improved peak hardness but also an improvement of property stability at the ageing temperature.展开更多
The PE-Al-PE composite pipe is a multiplayer pipe t hat is composed of PE (polyethylene) and Aluminum. Al is inlayed the inner PE la yer and the outer PE layer. In the producing technological process of this kind of p...The PE-Al-PE composite pipe is a multiplayer pipe t hat is composed of PE (polyethylene) and Aluminum. Al is inlayed the inner PE la yer and the outer PE layer. In the producing technological process of this kind of pipe the bend forming of Al belt to tube is very important. It is the bend fo rming dies that are used in the process of producing PE-Al-PE pipe that is stu died in this article. To make a elaborate division, these dies can be classified as bending dies and forming dies here. In this paper, the designation of bendin g dies and forming dies that are used in producing technological process of PE- Al-PE pipe is put forward. The process starts from a coil of Al belt, in the ac tion of pulling force, passes between several bending dies to change its shape. The first step is to change Al belt to U shape. A couple of rolling wheels can b e used to shape the Al belt. The Al belt goes between the two rolling wheels, dr ives the wheels, at the same time is formed as the shape of the rolling wheels. Considering of the factors such as spring of the bend Al belt, frictional force between Al and the die, bending force needed to bend Al belt, etc., it must be s haped gradually into U by several dies. The designation of these dies has been g iven in this paper. The next step is to forming the U shape into a circle. The U shape Al belt goes through a round that is formed with a four-roller die, and then is shaped to a circle. Because the latter procedure requires the Al circle has a laminated area to be ultrasonic welded, this die must be designed to let t he two edges of the circle belt to be piled up to a definite width. But except f or the laminated area the other of the circle should be as round as possible. So the four rollers are not the same. The calculation and designation of the rolle rs of this four-roller die has also been given. The designation of the roller w hich is supposed to leave a gap to let the two edges of the circle belt to be pi led up is to make a fine rotation of an original circle. Then calculates the cen ter of the rotated arc and defines the arc completely. The designation method of the other rollers has also been given in this paper.展开更多
Stress corrosion cracking (SCC) resistance of a spray formed Al-Zn-Mg-Cu alloy underwent retrogression and reaging (RRA) was studied by slow strain rate tests in dry air and 3.5 wt% NaCl solution. The results showed t...Stress corrosion cracking (SCC) resistance of a spray formed Al-Zn-Mg-Cu alloy underwent retrogression and reaging (RRA) was studied by slow strain rate tests in dry air and 3.5 wt% NaCl solution. The results showed that after RRA treatment, interrupted η phases at grain boundaries and slightly wide precipitate free zones could decrease SCC susceptibility of the alloy. Lots of reticular dislocations appeared in deformation process could prevent hydrogen induced cracking, and then SCC. Abundance transgranular dispersive η' phases separated out again promoted tensile strength to 759.4 MPa. The fracture ways of the specimens were dimple fracture in dry air and sub-cleavage fracture in 3.5% NaCl solution.展开更多
文摘为了满足结构件的一体式、轻量级以及专属定制的要求,笔者对激光熔化沉积(laser metal deposition,LMD)成形Al-12Si合金激光工艺参数进行了摸索,优化激光成形参数;在此基础之上,开展激光熔化沉积成形实验,通过金相分析、扫描电子显微镜(scanning electron microscope,SEM)等表征手段对激光熔化沉积制备Al-12Si合金显微组织进行表征。结果表明:在激光功率700~800 W、激光扫描速度为300~360 mm/min的工艺参数下能够获得高度致密的Al-12Si合金。激光熔化沉积Al-12Si合金成形工艺的研究旨在克服传统制造方式的局限性,通过科学的方法优化工艺参数并改善成形质量,最终获得高质量且性能优异的Al-12Si合金部件。
文摘Green and low carbon promote the application and development of light-weight materials in body-in-white. Large-scale die-casting Al alloy (DCAA) and high-strength thermo-formed steel sheet (TFSS) have put forward higher requirements for the application of joining technology of high-strength steel/Al dissimilar materials. Taking the new die-casting Al alloy body as an example, this paper systematically studies the progress of the latest joining methods of steel/Al dissimilar material with combination of two-layer plate and three-layer plate. By analyzing the joining technologies such as FSPR, RES, FDS and SPR, the technology and process characteristics of steel/Al dissimilar material joining are studied, and the joining technical feasibility and realization means of different material combination of the body are analyzed. The conditions of material combination, material thickness, material strength, flange height, preformed holes and joint spacing for achieving high-quality joining are given. The FSPR joining technology is developed and tested in order to meet with the joining of parts with DCAA and TFSS, especially for the joining of three-layer plates with them. It finds the method and technical basis for the realization of high quality joining of dissimilar materials, provides the early conditions for the application of large DCAA and TFSS parts in body-in-white, and meets the design requirements of new energy body. .
基金financially supported by the Major Special Projects in Anhui Province,China(No.202003c08020005)the Key Projects in Hunan Province,China(No.2020GK2045)+1 种基金the Science and Technology Innovation Program of Hunan Province,China(No.2021RC4036)Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.CX20211079)。
文摘High strength Al Zn Mg Cu alloys were produced by spray forming process, and compacted by hot extrusion. The results show that the as deposited billets have fine grained microstructure and low porosity. After heat treatment, mechanical properties increase greatly: tensile strength up to 754 MPa, yield strength up to 722 MPa, fracture elongation up to 8%, and elastic modulus up to 72 GPa, respectively. [
基金supported by the Major State Basic Research & Development Program of China (No2006CB605204)
文摘Microstructural evolution and phase transformation induced by different heat treatments of the hypereutectic aluminium-silicon alloy, Al-25Si-5Fe-3Cu (wt%, signed as 3C), fabricated by traditional cast (TC) and spray forming (SF) processes, were investigated by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy and X-ray diffraction techniques. The results show that A17Cu2Fe phase can be formed and transformed in TC- and SF-3C alloys between 802-813 K and 800-815 K, respectively. The transformation from β-Al5FeSi to δ-Al4FeSi2 phase via peritectic reaction can occur at around 858-870 K and 876-890 K in TC- and SF-3C alloys, respectively. The starting precipitation temperature of δ-Al4FeSi2 phase as the dominant Fe-bearing phase in the TC-3C alloy is 997 K and the exothermic peak about the peritectic transformation of δ-Al4FeSi2→β-Al5FeSi is not detected in the present DSC experiments. Also, the mechanisms of the microstructural evolution and phase transformation are discussed.
基金This project is financially supported by State Key Fundamental Research of "973" Development Plan (No. G2000067208-4)
文摘A self-made single-roll stirring (SRS) machine was used to manufacturesemisolid A2017 alloy, the mechanism of A2017 alloy formation was investigated. It was shown thatA2017 dendrites growing on the rough roll surface are crashed into fragments by the roll, which moveand grow freely then contribute the formation of finer spherical microstruc-ture. When casting at710-750℃, fine and homogeneous spherical or elliptical grains of A2017 alloy were obtained.Extending forming mould has been designed and was installed at the exit of roll-shoe gap. A2017alloy was formed by extending continuously at the semisolid state on SRS machine. Throughcontrolling pouring temperature, semisolid forming and extending extrusion was combined organically.A2017 product with fine surface and rectangular transection of 14 mm x 25 mm was obtained. Bycontrast to the national standard, the fracture strength and elongation of A2017 products producedfrom extending semisolid extrusion have been improved with an increase of 100 MPa and 29%,respectively.
文摘The grain growth behavior of spray-formed Al-70wt.%Si alloys was studied in the semi-solid state. The specimens were isothermally heat-treated at various temperatures between the solidus and liquidus of Al-Si alloys and then quenched in water. The microstructure of reheated specimens was characterized using optical and scanning electron microscopies. The isothermal holding experiment was carried out to investigate grain growth behavior as a function of holding time and temperature in the semi-solid state. The coarsening mechanism and the effect of porosity on microstructure were also studied.
基金Project(50225520) supported by the National Found for Distinguished Young Scholars
文摘The effect of temperature distribution on warm forming performance was investigated for 5083-O (Al-Mg) sheet metal blanks. Combined isothermal/non-isothermal FEA with design of experiments tools were used to predict appropriate warm forming temperature conditions for deep drawing and two-dimensional stamping cases. In the investigated temperature range of 25?250 ℃, the formability of Al-5083 alloy is found to be greatly dependent on the temperature distribution of the die and punch. To achieve increased degrees of forming, different temperature levels should be assigned to the corner and body of the die and punch. And the optimal temperature distributions for warm deep drawing and warm two-dimensional stamping are not identical.
基金Project(G20000672) supported by the National Basic Research Program of China
文摘A novel Si-Al alloy was prepared by spray forming process for electronic packaging. Property measurements on spray-formed Si-Al alloys after hot pressing were carried out. The results indicate that the alloys (Si-(30%-40%)Al) have advantageous physical and mechanical characteristics, including low coefficient of thermal expansion (6.9×10-6-8.7×10-6/K), high thermal conductivity (118-127 W/(m·K)), low density (2.421×103-2.465×103 kg/m3), high ultimate flexural strength (180-220 MPa) and Brinell hardness (162261). The alloys are easy to machine to tight tolerances using standard machine tools and they can be electroplated with gold finishes and soldered with Sn-Pb alloy without any difficulty.
基金the National Natural Science Foundation of China(No.50275094).
文摘Based on the characteristics of 3D bulk forming process, the arbitrary Lagrangian-Eulerian (ALE) formulation-based FEM is studied, and a prediction-correction ALE-based FEM is proposed which integrates the advantages of precisely predicting the boundary configuration of the deformed material, and of efficiently avoiding hexahedron remeshing processes. The key idea of the prediction-correction ALE FEM is elaborated in detail. Accordingly, the strategy of mesh quality control, one of the key enabling techniques for the 3D bulk forming process numerical simulation by the prediction-correction ALE FEM is carefully investigated, and the algorithm for hexahedral element refinement is formulated based on the mesh distortion energy.
基金Project(2001AA332030) supported by the Hi-tech Research and Development Program of China
文摘The microstructure and aging behavior of spray formed Al-Zn-Mg-Cu alloys were investigated as a function of alloying element addition. It is revealed that the grains of the as-deposited alloys are refined with increasing Zn element, while the function of Ni addition is to reduce grain boundary particles and eutectic in the as-extruded condition. Particles containing Mg and Zn are found to increase with Zn content increasing, while the role of Ni is to reduce both the number and size of these particles. After uniform heat treatment, parts of educts in grain boundary have melted and the grains have not grown up obviously. After heat extrusion, the microstructure becomes denser and there are many precipitated phases in cross-section while there are second phase arranging along extruded direction in longitudinal section. During artificial aging, the increment of Zn content produces not much effect on peak hardness, in addition to an accelerated overage softening. An addition of about 0.13%Ni, however, gives rise to not only improved peak hardness but also an improvement of property stability at the ageing temperature.
文摘The PE-Al-PE composite pipe is a multiplayer pipe t hat is composed of PE (polyethylene) and Aluminum. Al is inlayed the inner PE la yer and the outer PE layer. In the producing technological process of this kind of pipe the bend forming of Al belt to tube is very important. It is the bend fo rming dies that are used in the process of producing PE-Al-PE pipe that is stu died in this article. To make a elaborate division, these dies can be classified as bending dies and forming dies here. In this paper, the designation of bendin g dies and forming dies that are used in producing technological process of PE- Al-PE pipe is put forward. The process starts from a coil of Al belt, in the ac tion of pulling force, passes between several bending dies to change its shape. The first step is to change Al belt to U shape. A couple of rolling wheels can b e used to shape the Al belt. The Al belt goes between the two rolling wheels, dr ives the wheels, at the same time is formed as the shape of the rolling wheels. Considering of the factors such as spring of the bend Al belt, frictional force between Al and the die, bending force needed to bend Al belt, etc., it must be s haped gradually into U by several dies. The designation of these dies has been g iven in this paper. The next step is to forming the U shape into a circle. The U shape Al belt goes through a round that is formed with a four-roller die, and then is shaped to a circle. Because the latter procedure requires the Al circle has a laminated area to be ultrasonic welded, this die must be designed to let t he two edges of the circle belt to be piled up to a definite width. But except f or the laminated area the other of the circle should be as round as possible. So the four rollers are not the same. The calculation and designation of the rolle rs of this four-roller die has also been given. The designation of the roller w hich is supposed to leave a gap to let the two edges of the circle belt to be pi led up is to make a fine rotation of an original circle. Then calculates the cen ter of the rotated arc and defines the arc completely. The designation method of the other rollers has also been given in this paper.
文摘Stress corrosion cracking (SCC) resistance of a spray formed Al-Zn-Mg-Cu alloy underwent retrogression and reaging (RRA) was studied by slow strain rate tests in dry air and 3.5 wt% NaCl solution. The results showed that after RRA treatment, interrupted η phases at grain boundaries and slightly wide precipitate free zones could decrease SCC susceptibility of the alloy. Lots of reticular dislocations appeared in deformation process could prevent hydrogen induced cracking, and then SCC. Abundance transgranular dispersive η' phases separated out again promoted tensile strength to 759.4 MPa. The fracture ways of the specimens were dimple fracture in dry air and sub-cleavage fracture in 3.5% NaCl solution.