The physicochemical properties of the system, such as density, surface tension, specific conductance and melting point were measured. The results were discussed.
Minor addition of Sc to aluminum results in the rapid precipitation of homogeneously distributed Al3Sc dispersoids. The presence of Al3Sc dispersoids is more effective recrystallization inhibitors. Our work establishe...Minor addition of Sc to aluminum results in the rapid precipitation of homogeneously distributed Al3Sc dispersoids. The presence of Al3Sc dispersoids is more effective recrystallization inhibitors. Our work established the precipitation of homogeneously distributed Al3Sc dispersoids, which are coherent with the matrix, have the L12 structure. It was also established that the addition of Sc was effective in improving the recrystallization resistance.展开更多
The effects of Sc content on the mechanical properties of Al-Sc alloys were investigated. The results show that the strengths of all the tested alloys with 0.1 wt.%, 0.3 wt.%, and 0.4 wt.% Sc additions increase initia...The effects of Sc content on the mechanical properties of Al-Sc alloys were investigated. The results show that the strengths of all the tested alloys with 0.1 wt.%, 0.3 wt.%, and 0.4 wt.% Sc additions increase initially with an increase in annealing time, due to the increase in volume fraction and size and the decrease in particle interspacing of Al3Sc particles. After reaching peak values, the strengths of all the tested alloys start to decrease with increasing annealing time due to the coarsening and increase in particle interspacing of At3Sc particles. It has also been shown that the alloy with 0.3 wt.% Sc has a higher strength and a lower elongation than the alloys with 0.1 wt.% and 0.4 wt.% Sc. The increase in strength and the decrease in elongation of the alloy with 0.3 wt.% Sc are due to the smaller particle interspacing of Al3Sc particles, resulting in a strong inhibition of dislocation movement during deformation.展开更多
In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entro...In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.展开更多
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro...High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.展开更多
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi...Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.展开更多
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t...This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.展开更多
Al-Sc and Al-Ti semi-infinite targets were impacted by high-speed projectiles at velocities of 0.8, 1.0, 1.2 and 1.5 km/s, respectively. It is found that the Al-Sc targets demonstrate more excellent ability to resist ...Al-Sc and Al-Ti semi-infinite targets were impacted by high-speed projectiles at velocities of 0.8, 1.0, 1.2 and 1.5 km/s, respectively. It is found that the Al-Sc targets demonstrate more excellent ability to resist high-speed impact. It is concluded that different microstructures of Al-Sc and Al-Ti alloys, including different grain sizes and secondary particles precipitated in the matrix, result in their greatly different capabilities of resisting impact. Furthermore, the effect of the size range ofnanoscale A13Sc precipitate in A1-Sc alloy on the resistance of high-speed impact was investigated. In addition, computer simulations and validation of these simulations were developed which fairly accurately represented residual crater shapes/geometries. Validated computer simulations allowed representative extrapolations of impact craters well beyond the laboratory where melt and solidification occurred at the crater wall, especially for hypervelocity impact (〉5 km/s).展开更多
Sc solute clusters with a high number density were produced in an Al-0.3 wt.%Sc alloy when aged at250℃,while fine Al_(3)Sc precipitates were predominantly formed in the same alloy aged at 300℃.The alloy strengthened...Sc solute clusters with a high number density were produced in an Al-0.3 wt.%Sc alloy when aged at250℃,while fine Al_(3)Sc precipitates were predominantly formed in the same alloy aged at 300℃.The alloy strengthened by Sc solute clusters displayed higher yield strength and simultaneously greater ductility than its counterpart strengthened by Al_(3)Sc precipitates.This clearly demonstrates a superior strengthductility synergy promoted by the Sc solute clusters in Al-Sc alloys.The effects of Al_(3)Sc precipitates and Sc solute clusters on ductility were discussed in comparison by using a micromechanics fracture model.Since the Sc clusters were stabilized at 250℃,the Al-Sc alloys strengthened by Sc solute clusters should find extensive application fields within a wide temperature range,due to their high temperature resistance.展开更多
Al-x%Sc-0.11%Zr alloys (x=0, 0.02, 0.05, 0.08, 0.11, 0.15) were produced by a chill cast procedure. The effect of Sc content on the precipitation of Al3(Sc,Zr) during heat treatment at 475 °C for 12 h was stu...Al-x%Sc-0.11%Zr alloys (x=0, 0.02, 0.05, 0.08, 0.11, 0.15) were produced by a chill cast procedure. The effect of Sc content on the precipitation of Al3(Sc,Zr) during heat treatment at 475 °C for 12 h was studied. Nucleation, precipitation and distribution of Al3(Sc,Zr) precipitates were found to be strongly related to the Sc content. With increasing the Sc content, the average radius of the precipitates decreases, while the number density of the precipitates increases, as investigated by transmission electron microscopy (TEM). The distribution of the precipitates becomes more and more homogeneous when the Sc content is increased. The recrystallization resistance of samples that was 90% cold rolled and isothermal annealed for half an hour in the temperature range of 200-600 °C was investigated. The results show that the recrystallization temperature varies from 250 °C for the alloy without Sc to about 600 °C for the alloy containing 0.15% Sc because of the high density of Al3(Sc,Zr) precipitates.展开更多
Al-1.0%Sc-1.0%Zr (mass fraction) master alloy was prepared at different cooling rates. The morphology and thermodynamics data of the primary particles of the master alloy were investigated by X-ray diffraction (XRD...Al-1.0%Sc-1.0%Zr (mass fraction) master alloy was prepared at different cooling rates. The morphology and thermodynamics data of the primary particles of the master alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). It shows that the primary particles are dendrite-shaped particles comprised of several attached small cubic, cusped-cubic or crucifer shape particles at slow cooling rate. However, the primary particles are separated with crucifer shape at intermediate cooling rate, and they are cubic with cusped-cubic shape at high cooling rate. Meanwhile, the separated and attached particles present AlaSc/AlaZr1-xScx core-shell structure. The formation mechanism of the structure was systematically investigated by a mathematical model.展开更多
This work mainly deals with the segregating behaviors of Sc and the growth of unique primary Al3Sc in AlSc alloys prepared by molten salt electrolysis. The alloys contain 0.23–1.38 wt%Sc where Sc segregation is obser...This work mainly deals with the segregating behaviors of Sc and the growth of unique primary Al3Sc in AlSc alloys prepared by molten salt electrolysis. The alloys contain 0.23–1.38 wt%Sc where Sc segregation is observed. It is found that a high current density and long electrolysis time are in favor of high Sc content, and so do the high temperature and the addition level of Sc2O3. Sc content at the edge of Al based alloy(average Sc content: 0.75 wt%) can be as high as 1.09 wt%, while it is merely 0.24 wt% at the central area. The cooling rates have a strong impact on the morphology and particle size of primary Al3Sc,but a weak influence on Sc segregation. The cusped cubic and dendritic primary Al3Sc can precipitate in the prepared Al-Sc alloys. In a slightly hypereutectic Al-0.67 wt%Sc alloy, a large and cusped dendrite grows from the edge into the center. The primary and secondary dendritic arms can be as long as 600 and 250 μm, respectively. The Sc segregating behaviors in Al-Sc alloys is due to the mechanism controlled by the limited diffusion rate of Sc in liquid Al. This can involve the establishment of a near spherical discharge interface between liquid Al and the electrolyte. The Sc rich layer near Al-molten salt interface may provide the potential primary nuclei and sufficient Sc atoms for the growth of large dendritic primary Al3Sc.展开更多
In order to investigate the effects of solid solution atoms, precipitated particles and cold deformation on the microstructures and properties of Al-Sc-Zr alloys, the Al-Sc-Zr alloys prepared by continuous rheo-extrus...In order to investigate the effects of solid solution atoms, precipitated particles and cold deformation on the microstructures and properties of Al-Sc-Zr alloys, the Al-Sc-Zr alloys prepared by continuous rheo-extrusion were treated by thermomechanical treatment, analyzed for conductivity and mechanical properties by tensile and microhardness testing, and characterized using optical microscope, TEM and STEM. A mathematical model was established to quantitatively characterize the contribution of solid solution atoms, precipitates and cold deformation to the conductivity of the alloy. The results show that the strength of Al alloy can be significantly improved by solid solution, aging and cold deformation, and the quantitative impacts of solution atoms, precipitates and cold deformation on the conductivity of Al alloy are 10.5%(IACS), 2.3%(IACS) and 0.5%(IACS), respectively. Aging and cold deformation treatments are the keys to obtain high-strength and high-conductivity aluminum alloy wires.展开更多
Polypropylene(PP)and polyethylene(PE)play central roles in our daily life.However,their immiscibility presents a major hurdle in both industry and academia when recycling them into alloys with favorable mechanical pro...Polypropylene(PP)and polyethylene(PE)play central roles in our daily life.However,their immiscibility presents a major hurdle in both industry and academia when recycling them into alloys with favorable mechanical properties.Moreover,typical compatibilizer-enabled approaches are limited due to increased environmental concerns.Herein,inspired by a traditional Chinese technique,we report a facile,industry-scale methodology that produces a PP/PE binary blend with a highly ordered honeycomb nanostructure without any additives.Due to its nanostructure,the blend exhibits enhanced tensile properties in com-parison with the parent components or with a sample prepared using an internal mixer.This approach has potential for applications not only in immiscible polymer blending,but also in non-sorting,compatibilizer-free waste plastics recycling.Through this technique,we expect that an environmentally friendly and sustainable plastic wastes recycling avenue can be found,and great economic benefits can be gained.展开更多
Al-Sc alloys with high Sc contents are served as sputtering targets for making high-performance piezoelectric devices.The micro structure of these alloys would affect the sputtering process and the final quality of th...Al-Sc alloys with high Sc contents are served as sputtering targets for making high-performance piezoelectric devices.The micro structure of these alloys would affect the sputtering process and the final quality of the functional devices.In this study,the microstructure in as-c as ted Al-20%Sc(in atomic ratio)alloys is characterized and the feathery Al3Sc grains with twin relationships are reported for the first time.The crystallographic features of twined structures and growth directions are quantitatively analyzed by electron backscatter diffraction(EBSD)technique.展开更多
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ...Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.展开更多
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness...High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.展开更多
The magnetic properties and anisotropy of amor- phous(Fe_(80)Ni_(20))_(78)Si_xB_(22-x).alloys have been investigated systematically.The maximum permeability,coercive force and remanence have been determined for as-pre...The magnetic properties and anisotropy of amor- phous(Fe_(80)Ni_(20))_(78)Si_xB_(22-x).alloys have been investigated systematically.The maximum permeability,coercive force and remanence have been determined for as-prepared and annealed samples,The results on the technical magnetic properties of this alloy system have been discussed and compared with Masumoto's.展开更多
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ...This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys.展开更多
文摘The physicochemical properties of the system, such as density, surface tension, specific conductance and melting point were measured. The results were discussed.
文摘Minor addition of Sc to aluminum results in the rapid precipitation of homogeneously distributed Al3Sc dispersoids. The presence of Al3Sc dispersoids is more effective recrystallization inhibitors. Our work established the precipitation of homogeneously distributed Al3Sc dispersoids, which are coherent with the matrix, have the L12 structure. It was also established that the addition of Sc was effective in improving the recrystallization resistance.
基金supported by the National Natural Science Foundation of China(Nos.50831007,50823006,and 50825102)the Natural Science Foundation of Hunan Province,China(No.07JJ3117)
文摘The effects of Sc content on the mechanical properties of Al-Sc alloys were investigated. The results show that the strengths of all the tested alloys with 0.1 wt.%, 0.3 wt.%, and 0.4 wt.% Sc additions increase initially with an increase in annealing time, due to the increase in volume fraction and size and the decrease in particle interspacing of Al3Sc particles. After reaching peak values, the strengths of all the tested alloys start to decrease with increasing annealing time due to the coarsening and increase in particle interspacing of At3Sc particles. It has also been shown that the alloy with 0.3 wt.% Sc has a higher strength and a lower elongation than the alloys with 0.1 wt.% and 0.4 wt.% Sc. The increase in strength and the decrease in elongation of the alloy with 0.3 wt.% Sc are due to the smaller particle interspacing of Al3Sc particles, resulting in a strong inhibition of dislocation movement during deformation.
基金financially supported by the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province,China(No.2023JH2/101600002)+3 种基金the Liaoning Provincial Natural Science Foundation,China(No.2022-YQ-09)the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program,China(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group,China(No.KJBLM202202)the Fundamental Research Funds for the Central Universities,China(Nos.N2201023 and N2325009)。
文摘In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.
基金financially supported by the National Natural Science Foundation of China(Nos.52175284 and 52474396)the National Key Research and Development Program of China(No.2022YFB3404201)。
文摘High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.
基金supported by the National Science and Technology Major Project,China(No.2019-VI-0004-0118)the National Natural Science Foundation of China(No.51771152)the National Key R&D Program of China(No.2018YFB1106800)。
文摘Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.
基金financially supported by the National Natural Science Foundation of China(Nos.21171018 and 51271021)the State Key Laboratory for Advanced Metals and Materials。
文摘This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.
文摘Al-Sc and Al-Ti semi-infinite targets were impacted by high-speed projectiles at velocities of 0.8, 1.0, 1.2 and 1.5 km/s, respectively. It is found that the Al-Sc targets demonstrate more excellent ability to resist high-speed impact. It is concluded that different microstructures of Al-Sc and Al-Ti alloys, including different grain sizes and secondary particles precipitated in the matrix, result in their greatly different capabilities of resisting impact. Furthermore, the effect of the size range ofnanoscale A13Sc precipitate in A1-Sc alloy on the resistance of high-speed impact was investigated. In addition, computer simulations and validation of these simulations were developed which fairly accurately represented residual crater shapes/geometries. Validated computer simulations allowed representative extrapolations of impact craters well beyond the laboratory where melt and solidification occurred at the crater wall, especially for hypervelocity impact (〉5 km/s).
基金financially supported by the National Natural Science Foundation of China(Nos.52071253,51621063,51625103,51722104 and 51790482)the“111 Project”of China(BP2018008)the Financial support by the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies。
文摘Sc solute clusters with a high number density were produced in an Al-0.3 wt.%Sc alloy when aged at250℃,while fine Al_(3)Sc precipitates were predominantly formed in the same alloy aged at 300℃.The alloy strengthened by Sc solute clusters displayed higher yield strength and simultaneously greater ductility than its counterpart strengthened by Al_(3)Sc precipitates.This clearly demonstrates a superior strengthductility synergy promoted by the Sc solute clusters in Al-Sc alloys.The effects of Al_(3)Sc precipitates and Sc solute clusters on ductility were discussed in comparison by using a micromechanics fracture model.Since the Sc clusters were stabilized at 250℃,the Al-Sc alloys strengthened by Sc solute clusters should find extensive application fields within a wide temperature range,due to their high temperature resistance.
基金Project (CDJZR12130048) supported by the Fundamental Research Funds for the Central Universities of ChinaProject supported by the Research Council of Norway
文摘Al-x%Sc-0.11%Zr alloys (x=0, 0.02, 0.05, 0.08, 0.11, 0.15) were produced by a chill cast procedure. The effect of Sc content on the precipitation of Al3(Sc,Zr) during heat treatment at 475 °C for 12 h was studied. Nucleation, precipitation and distribution of Al3(Sc,Zr) precipitates were found to be strongly related to the Sc content. With increasing the Sc content, the average radius of the precipitates decreases, while the number density of the precipitates increases, as investigated by transmission electron microscopy (TEM). The distribution of the precipitates becomes more and more homogeneous when the Sc content is increased. The recrystallization resistance of samples that was 90% cold rolled and isothermal annealed for half an hour in the temperature range of 200-600 °C was investigated. The results show that the recrystallization temperature varies from 250 °C for the alloy without Sc to about 600 °C for the alloy containing 0.15% Sc because of the high density of Al3(Sc,Zr) precipitates.
基金Project(2012CB619503)supported by the National Basic Research Program of ChinaProject(2013AA031001)supported by the National High-tech Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science and Technology Cooperation Program of China
文摘Al-1.0%Sc-1.0%Zr (mass fraction) master alloy was prepared at different cooling rates. The morphology and thermodynamics data of the primary particles of the master alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). It shows that the primary particles are dendrite-shaped particles comprised of several attached small cubic, cusped-cubic or crucifer shape particles at slow cooling rate. However, the primary particles are separated with crucifer shape at intermediate cooling rate, and they are cubic with cusped-cubic shape at high cooling rate. Meanwhile, the separated and attached particles present AlaSc/AlaZr1-xScx core-shell structure. The formation mechanism of the structure was systematically investigated by a mathematical model.
基金financial support of the project from the Beijing Natural Science Foundation (2184110)the National Natural Science Foundation of China (Nos. 51434005, 51704020 and 51874035)the Fundamental Research Funds for Central Universities of China (No. FRF-TP-17-035A1)
文摘This work mainly deals with the segregating behaviors of Sc and the growth of unique primary Al3Sc in AlSc alloys prepared by molten salt electrolysis. The alloys contain 0.23–1.38 wt%Sc where Sc segregation is observed. It is found that a high current density and long electrolysis time are in favor of high Sc content, and so do the high temperature and the addition level of Sc2O3. Sc content at the edge of Al based alloy(average Sc content: 0.75 wt%) can be as high as 1.09 wt%, while it is merely 0.24 wt% at the central area. The cooling rates have a strong impact on the morphology and particle size of primary Al3Sc,but a weak influence on Sc segregation. The cusped cubic and dendritic primary Al3Sc can precipitate in the prepared Al-Sc alloys. In a slightly hypereutectic Al-0.67 wt%Sc alloy, a large and cusped dendrite grows from the edge into the center. The primary and secondary dendritic arms can be as long as 600 and 250 μm, respectively. The Sc segregating behaviors in Al-Sc alloys is due to the mechanism controlled by the limited diffusion rate of Sc in liquid Al. This can involve the establishment of a near spherical discharge interface between liquid Al and the electrolyte. The Sc rich layer near Al-molten salt interface may provide the potential primary nuclei and sufficient Sc atoms for the growth of large dendritic primary Al3Sc.
基金Project(51674077) supported by the National Natural Science Foundation of ChinaProject(2018YFB2001800) supported by the National Research and Development Program of China
文摘In order to investigate the effects of solid solution atoms, precipitated particles and cold deformation on the microstructures and properties of Al-Sc-Zr alloys, the Al-Sc-Zr alloys prepared by continuous rheo-extrusion were treated by thermomechanical treatment, analyzed for conductivity and mechanical properties by tensile and microhardness testing, and characterized using optical microscope, TEM and STEM. A mathematical model was established to quantitatively characterize the contribution of solid solution atoms, precipitates and cold deformation to the conductivity of the alloy. The results show that the strength of Al alloy can be significantly improved by solid solution, aging and cold deformation, and the quantitative impacts of solution atoms, precipitates and cold deformation on the conductivity of Al alloy are 10.5%(IACS), 2.3%(IACS) and 0.5%(IACS), respectively. Aging and cold deformation treatments are the keys to obtain high-strength and high-conductivity aluminum alloy wires.
基金National Key Research and Development Program of China (2019YFC1908202)the Key Program of National Natural Science Foundation of China (51435005)+1 种基金the National Natural Science Foundation of China (51403068)the China Postdoctoral Science Foundation (2019M652883) for the financial support of this work
文摘Polypropylene(PP)and polyethylene(PE)play central roles in our daily life.However,their immiscibility presents a major hurdle in both industry and academia when recycling them into alloys with favorable mechanical properties.Moreover,typical compatibilizer-enabled approaches are limited due to increased environmental concerns.Herein,inspired by a traditional Chinese technique,we report a facile,industry-scale methodology that produces a PP/PE binary blend with a highly ordered honeycomb nanostructure without any additives.Due to its nanostructure,the blend exhibits enhanced tensile properties in com-parison with the parent components or with a sample prepared using an internal mixer.This approach has potential for applications not only in immiscible polymer blending,but also in non-sorting,compatibilizer-free waste plastics recycling.Through this technique,we expect that an environmentally friendly and sustainable plastic wastes recycling avenue can be found,and great economic benefits can be gained.
基金financially supported by the National Key R&D Program of China(No.2017YFB0405901)。
文摘Al-Sc alloys with high Sc contents are served as sputtering targets for making high-performance piezoelectric devices.The micro structure of these alloys would affect the sputtering process and the final quality of the functional devices.In this study,the microstructure in as-c as ted Al-20%Sc(in atomic ratio)alloys is characterized and the feathery Al3Sc grains with twin relationships are reported for the first time.The crystallographic features of twined structures and growth directions are quantitatively analyzed by electron backscatter diffraction(EBSD)technique.
基金supported by the National Natural the Science Foundation of China(51971042,51901028)the Chongqing Academician Special Fund(cstc2020yszxjcyj X0001)+1 种基金the China Scholarship Council(CSC)Norwegian University of Science and Technology(NTNU)for their financial and technical support。
文摘Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.
基金supported by the National Natural Science Foundation of China(No.52273280)the Creative Research Groups of China(No.51921001).
文摘High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.
文摘The magnetic properties and anisotropy of amor- phous(Fe_(80)Ni_(20))_(78)Si_xB_(22-x).alloys have been investigated systematically.The maximum permeability,coercive force and remanence have been determined for as-prepared and annealed samples,The results on the technical magnetic properties of this alloy system have been discussed and compared with Masumoto's.
基金funded by the National Natural Science Foundation of China(Nos.51801189)The Central Guidance on Local Science and Technology Development Fund of Shanxi Province(Nos.YDZJTSX2021A027)+2 种基金The National Natural Science Foundation of China(Nos.51801189)The Science and Technology Major Project of Shanxi Province(No.20191102008,20191102007)The North University of China Youth Academic Leader Project(No.11045505).
文摘This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys.